
ptg26261585

ptg26261585

Change Function Declaration (124)
Change Reference to Value (252)
Change Value to Reference (256)
Collapse Hierarchy (380)
Combine Functions into Class (144)
Combine Functions into Transform

(149)
Consolidate Conditional Expression

(263)
Decompose Conditional (260)
Encapsulate Collection (170)
Encapsulate Record (162)
Encapsulate Variable (132)
Extract Class (182)
Extract Function (106)
Extract Superclass (375)
Extract Variable (119)
Hide Delegate (189)
Inline Class (186)
Inline Function (115)
Inline Variable (123)
Introduce Assertion (302)
Introduce Parameter Object (140)
Introduce Special Case (289)
Move Field (207)
Move Function (198)
Move Statements into Function (213)
Move Statements to Callers (217)
Parameterize Function (310)
Preserve Whole Object (319)
Pull Up Constructor Body (355)
Pull Up Field (353)
Pull Up Method (350)
Push Down Field (361)
Push Down Method (359)
Remove Dead Code (237)

Remove Flag Argument (314)
Remove Middle Man (192)
Remove Setting Method (331)
Remove Subclass (369)
Rename Field (244)
Rename Variable (137)
Replace Command with Function

(344)
Replace Conditional with

Polymorphism (272)
Replace Constructor with Factory

Function (334)
Replace Derived Variable with Query

(248)
Replace Function with Command

(337)
Replace Inline Code with Function

Call (222)
Replace Loop with Pipeline (231)
Replace Nested Conditional with

Guard Clauses (266)
Replace Parameter with Query (324)
Replace Primitive with Object (174)
Replace Query with Parameter (327)
Replace Subclass with Delegate (381)
Replace Superclass with Delegate

(399)
Replace Temp with Query (178)
Replace Type Code with Subclasses

(362)
Separate Query from Modifier (306)
Slide Statements (223)
Split Loop (227)
Split Phase (154)
Split Variable (240)
Substitute Algorithm (195)

List of Refactorings

ptg26261585

Refactoring

Second Edition

ptg26261585The Pearson Addison-Wesley Signature Series provides readers
with practical and authoritative information on the latest trends in

modern technology for computer professionals. The series is based on
one simple premise: great books come from great authors.

Books in the Martin Fowler Signature Series are personally chosen
by Fowler, and his signature ensures that he has worked closely with
authors to define topic coverage, book scope, critical content, and
overall uniqueness. The expert signatures also symbolize a promise to
our readers: you are reading a future classic.

Visit informit.com/awss for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Pearson Addison-Wesley
Signature Series

AWSS_Fowler_Series_page_7_375x9_125_2017.indd 1 6/25/2018 1:28:28 PM

http://informit.com/awss
http://informit.com/socialconnect
http://informit.com/awss

ptg26261585

Refactoring

Improving the Design of Existing Code

Second Edition

Martin Fowler
with contributions by Kent Beck

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg26261585

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018950015

Copyright © 2019 Pearson Education, Inc.

Cover photo: Waldo-Hancock Bridge & Penobscot Narrows Bridge by Martin Fowler
Lightbulb graphic: Irina Adamovich/Shutterstock

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-475759-9
ISBN-10: 0-13-475759-9

1 18

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

ptg26261585

For Cindy
—Martin

ptg26261585

This page intentionally left blank

ptg26261585

xiForeword to the First Edition ...

xiiiPreface ..

1Chapter 1: Refactoring: A First Example ...
1The Starting Point ..
3Comments on the Starting Program ..
5The First Step in Refactoring ...
6Decomposing the statement Function ..

22Status: Lots of Nested Functions ..
24Splitting the Phases of Calculation and Formatting
31Status: Separated into Two Files (and Phases)
34Reorganizing the Calculations by Type ...
41Status: Creating the Data with the Polymorphic Calculator
43Final Thoughts ..

45Chapter 2: Principles in Refactoring ..
45Defining Refactoring ..
46The Two Hats ...
47Why Should We Refactor? ..
50When Should We Refactor? ..
55Problems with Refactoring ..
62Refactoring, Architecture, and Yagni ...
63Refactoring and the Wider Software Development Process
64Refactoring and Performance ..
67Where Did Refactoring Come From? ...
68Automated Refactorings ..
70Going Further ...

vii

Contents

ptg26261585

71Chapter 3: Bad Smells in Code ...
72Mysterious Name ..
72Duplicated Code ...
73Long Function ...
74Long Parameter List ...
74Global Data ...
75Mutable Data ..
76Divergent Change ..
76Shotgun Surgery ...
77Feature Envy ...
78Data Clumps ...
78Primitive Obsession ...
79Repeated Switches ..
79Loops ...
80Lazy Element ..
80Speculative Generality ...
80Temporary Field ...
81Message Chains ..
81Middle Man ...
82Insider Trading ...
82Large Class ..
83Alternative Classes with Different Interfaces ..
83Data Class ...
83Refused Bequest ...
84Comments ...

85Chapter 4: Building Tests ..
85The Value of Self-Testing Code ..
87Sample Code to Test ..
90A First Test ..
93Add Another Test ...
95Modifying the Fixture ..
96Probing the Boundaries ...
99Much More Than This ...

101Chapter 5: Introducing the Catalog ...
101Format of the Refactorings ..
102The Choice of Refactorings ...

Contentsviii

ptg26261585

105Chapter 6: A First Set of Refactorings ...
106Extract Function ...
115Inline Function ...
119Extract Variable ..
123Inline Variable ..
124Change Function Declaration ...
132Encapsulate Variable ..
137Rename Variable ..
140Introduce Parameter Object ..
144Combine Functions into Class ..
149Combine Functions into Transform ...
154Split Phase ..

161Chapter 7: Encapsulation ..
162Encapsulate Record ..
170Encapsulate Collection ..
174Replace Primitive with Object ..
178Replace Temp with Query ..
182Extract Class ...
186Inline Class ...
189Hide Delegate ...
192Remove Middle Man ...
195Substitute Algorithm ..

197Chapter 8: Moving Features ..
198Move Function ..
207Move Field ..
213Move Statements into Function ..
217Move Statements to Callers ..
222Replace Inline Code with Function Call ...
223Slide Statements ...
227Split Loop ..
231Replace Loop with Pipeline ..
237Remove Dead Code ...

239Chapter 9: Organizing Data ..
240Split Variable ..
244Rename Field ..
248Replace Derived Variable with Query ...

ixContents

ptg26261585

252Change Reference to Value ..
256Change Value to Reference ..

259Chapter 10: Simplifying Conditional Logic ...
260Decompose Conditional ..
263Consolidate Conditional Expression ..
266Replace Nested Conditional with Guard Clauses
272Replace Conditional with Polymorphism ..
289Introduce Special Case ..
302Introduce Assertion ..

305Chapter 11: Refactoring APIs ...
306Separate Query from Modifier ..
310Parameterize Function ...
314Remove Flag Argument ...
319Preserve Whole Object ..
324Replace Parameter with Query ...
327Replace Query with Parameter ...
331Remove Setting Method ..
334Replace Constructor with Factory Function ..
337Replace Function with Command ..
344Replace Command with Function ..

349Chapter 12: Dealing with Inheritance ...
350Pull Up Method ..
353Pull Up Field ...
355Pull Up Constructor Body ...
359Push Down Method ...
361Push Down Field ..
362Replace Type Code with Subclasses ..
369Remove Subclass ..
375Extract Superclass ..
380Collapse Hierarchy ...
381Replace Subclass with Delegate ...
399Replace Superclass with Delegate ..

405Bibliography ...

409Index ..

Contentsx

ptg26261585

“Refactoring” was conceived in Smalltalk circles, but it wasn’t long before it found
its way into other programming language camps. Because refactoring is integral
to framework development, the term comes up quickly when “frameworkers” talk
about their craft. It comes up when they refine their class hierarchies and when
they rave about how many lines of code they were able to delete. Frameworkers
know that a framework won’t be right the first time around—it must evolve as
they gain experience. They also know that the code will be read and modified
more frequently than it will be written. The key to keeping code readable and
modifiable is refactoring—for frameworks, in particular, but also for software in
general.

So, what’s the problem? Simply this: Refactoring is risky. It requires changes
to working code that can introduce subtle bugs. Refactoring, if not done properly,
can set you back days, even weeks. And refactoring becomes riskier when prac-
ticed informally or ad hoc. You start digging in the code. Soon you discover new
opportunities for change, and you dig deeper. The more you dig, the more stuff
you turn up. . .and the more changes you make. Eventually you dig yourself into
a hole you can’t get out of. To avoid digging your own grave, refactoring must
be done systematically. When my coauthors and I wrote Design Patterns, we
mentioned that design patterns provide targets for refactorings. However, identi-
fying the target is only one part of the problem; transforming your code so that
you get there is another challenge.

Martin Fowler and the contributing authors make an invaluable contribution
to object-oriented software development by shedding light on the refactoring
process. This book explains the principles and best practices of refactoring, and
points out when and where you should start digging in your code to improve it.
At the book’s core is a comprehensive catalog of refactorings. Each refactoring
describes the motivation and mechanics of a proven code transformation. Some
of the refactorings, such as Extract Method or Move Field, may seem obvious.

But don’t be fooled. Understanding the mechanics of such refactorings is the
key to refactoring in a disciplined way. The refactorings in this book will help
you change your code one small step at a time, thus reducing the risks of evolving

xi

Foreword to the First Edition

ptg26261585

your design. You will quickly add these refactorings and their names to your
development vocabulary.

My first experience with disciplined, “one step at a time” refactoring was when
I was pair-programming at 30,000 feet with Kent Beck. He made sure that we
applied refactorings from this book’s catalog one step at a time. I was amazed at
how well this practice worked. Not only did my confidence in the resulting code
increase, I also felt less stressed. I highly recommend you try these refactorings:
You and your code will feel much better for it.

— Erich Gamma, Object Technology International, Inc.
January 1999

Foreword to the First Editionxii

ptg26261585

Once upon a time, a consultant made a visit to a development project in order
to look at some of the code that had been written. As he wandered through the
class hierarchy at the center of the system, the consultant found it rather messy.
The higher-level classes made certain assumptions about how the classes would
work—assumptions that were embodied in inherited code. That code didn’t suit
all the subclasses, however, and was overridden quite heavily. Slight modifications
to the superclass would have greatly reduced the need to override it. In other
places, an intention of the superclass had not been properly understood, and
behavior present in the superclass was duplicated. In yet other places, several
subclasses did the same thing with code that could clearly be moved up the
hierarchy.

The consultant recommended to the project management that the code be
looked at and cleaned up—but the project management wasn’t enthusiastic.
The code seemed to work and there were considerable schedule pressures. The
managers said they would get around to it at some later point.

The consultant had also shown what was going on to the programmers working
on the hierarchy. The programmers were keen and saw the problem. They knew
that it wasn’t really their fault; sometimes, a new pair of eyes is needed to spot
the problem. So the programmers spent a day or two cleaning up the hierarchy.
When finished, they had removed half the code in the hierarchy without reducing
its functionality. They were pleased with the result and found that it became
quicker and easier both to add new classes and to use the classes in the rest of
the system.

The project management was not pleased. Schedules were tight and there was
a lot of work to do. These two programmers had spent two days doing work that
added nothing to the many features the system had to deliver in a few months’
time. The old code had worked just fine. Yes, the design was a bit more “pure”
and a bit more “clean.” But the project had to ship code that worked, not code
that would please an academic. The consultant suggested that a similar cleanup
should be done on other central parts of the system, which might halt the project

xiii

Preface

ptg26261585

for a week or two. All this was to make the code look better, not to make it do
anything it didn’t already do.

How do you feel about this story? Do you think the consultant was right to
suggest further cleanup? Or do you follow that old engineering adage, “if it works,
don’t fix it”?

I must admit to some bias here. I was that consultant. Six months later, the
project failed, in large part because the code was too complex to debug or tune
to acceptable performance.

The consultant Kent Beck was brought in to restart the project—an exercise
that involved rewriting almost the whole system from scratch. He did several
things differently, but one of the most important changes was to insist on contin-
uous cleaning up of the code using refactoring. The improved effectiveness of
the team, and the role refactoring played, is what inspired me to write the first
edition of this book—so I could pass on the knowledge that Kent and others have
acquired by using refactoring to improve the quality of software.

Since then, refactoring has become an accepted part of the vocabulary of pro-
gramming. And the original book has stood up rather well. However, eighteen
years is an old age for a programming book, so I felt it was time to go back and
rework it. Doing this had me rewrite pretty much every page in the book. But,
in a sense, very little has changed. The essence of refactoring is the same; most
of the key refactorings remain essentially the same. But I do hope that the
rewriting will help more people learn how to do refactoring effectively.

What Is Refactoring?

Refactoring is the process of changing a software system in a way that does not
alter the external behavior of the code yet improves its internal structure. It is a
disciplined way to clean up code that minimizes the chances of introducing bugs.
In essence, when you refactor, you are improving the design of the code after it
has been written.

“Improving the design after it has been written.” That’s an odd turn of phrase.
For much of the history of software development, most people believed that we
design first, and only when done with design should we code. Over time, the
code will be modified, and the integrity of the system—its structure according to
that design—gradually fades. The code slowly sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring, we can take a
bad, even chaotic, design and rework it into well-structured code. Each step is
simple—even simplistic. I move a field from one class to another, pull some code
out of a method to make it into its own method, or push some code up or down
a hierarchy. Yet the cumulative effect of these small changes can radically improve
the design. It is the exact reverse of the notion of software decay.

Prefacexiv

ptg26261585

With refactoring, the balance of work changes. I found that design, rather than
occurring all up front, occurs continuously during development. As I build the
system, I learn how to improve the design. The result of this interaction is a
program whose design stays good as development continues.

What’s in This Book?

This book is a guide to refactoring; it is written for a professional programmer.
My aim is to show you how to do refactoring in a controlled and efficient manner.
You will learn to refactor in such a way that you don’t introduce bugs into the
code but methodically improve its structure.

Traditionally, a book starts with an introduction. I agree with that in principle,
but I find it hard to introduce refactoring with a generalized discussion or
definitions—so I start with an example. Chapter 1 takes a small program with
some common design flaws and refactors it into a program that’s easier to under-
stand and change. This will show you both the process of refactoring and a
number of useful refactorings. This is the key chapter to read if you want to
understand what refactoring really is about.

In Chapter 2, I cover more of the general principles of refactoring, some defi-
nitions, and the reasons for doing refactoring. I outline some of the challenges
with refactoring. In Chapter 3, Kent Beck helps me describe how to find bad
smells in code and how to clean them up with refactorings. Testing plays a very
important role in refactoring, so Chapter 4 describes how to build tests into code.

The heart of the book—the catalog of refactorings—takes up the rest of its vol-
ume. While this is by no means a comprehensive catalog, it covers the key
refactorings that most developers will likely need. It grew from the notes I made
when learning about refactoring in the late 1990s, and I still use these notes now
as I don’t remember them all. When I want to do something, such as Split Phase
(154), the catalog reminds me how to do it in a safe, step-by-step manner. I hope
this is the part of the book that you’ll come back to often.

A Web-First Book

The World-Wide Web has made an enormous impact on our society, particularly
affecting how we gather information. When I wrote this book, most of the
knowledge about software development was transferred through print. Now I
gather most of my information online. This has presented a challenge for authors
like myself: Is there still a role for books, and what should they look like?

I believe there still is role for books like this—but they need to change. The
value of a book is a large body of knowledge put together in a cohesive fashion.
In writing this book, I tried to cover many different refactorings and organize
them in a consistent and integrated manner.

xvPreface

ptg26261585

But that integrated whole is an abstract literary work that, while traditionally
represented by a paper book, need not be in the future. Most of the book industry
still sees the paper book as the primary representation, and while we’ve enthusi-
astically adopted ebooks, they are just electronic representations of an original
work based on the structure of a paper book.

With this book, I’m exploring a different approach. The canonical form of this
book is its web site or web edition. Access to the web edition is included with
the purchase of the print or ebook versions. (See note below about registering
your product on InformIT.) The paper book is a selection of material from the
web site, arranged in a manner that makes sense for print. It doesn’t attempt to
include all the refactorings on the web site, particularly since I may well add
more refactorings to the canonical web edition in the future. Similarly, the ebook
is a different representation of the web book that may not include the same set
of refactorings as the printed book—after all, ebooks don’t get heavy as I add
pages and they can be easily updated after they are bought.

I don’t know whether you’re reading the web edition online, an ebook on your
phone, a paper copy, or some other form I can’t imagine as I write this. I do my
best to make this a useful work, whatever way you wish to absorb it.

For access to the canonical web edition and updates or corrections as they
become available, register your copy of Refactoring, Second Edition, on the InformIT
site. To start the registration process, go to informit.com/register and log in (or create
an account if you don’t have one). Enter the ISBN 9780134757599 and click
Submit. You will be asked a challenge question, so be sure to have your copy of
the print or ebook available. After you’ve successfully registered your copy,
open the “Digital Purchases” tab on your Account page and click on the link under
this title to “Launch” the web edition.

JavaScript Examples

As in most technical areas of software development, code examples are very im-
portant to illustrate the concepts. However, the refactorings look mostly the same
in different languages. There will sometimes be particular things that a language
forces me to pay attention to, but the core elements of the refactorings remain
the same.

I chose JavaScript to illustrate these refactorings, as I felt that this language
would be readable by the most amount of people. You shouldn’t find it difficult,
however, to adapt the refactorings to whatever language you are currently using.
I try not to use any of the more complicated bits of the language, so you should
be able to follow the refactorings with only a cursory knowledge of JavaScript.
My use of JavaScript is certainly not an endorsement of the language.

Although I use JavaScript for my examples, that doesn’t mean the techniques
in this book are confined to JavaScript. The first edition of this book used Java,
and many programmers found it useful even though they never wrote a single
Java class. I did toy with illustrating this generality by using a dozen different

Prefacexvi

http://informit.com/register

ptg26261585

languages for the examples, but I felt that would be too confusing for the reader.
Still, this book is written for programmers in any language. Outside of the example
sections, I’m not making any assumptions about the language. I expect the
reader to absorb my general comments and apply them to the language they
are using. Indeed, I expect readers to take the JavaScript examples and adapt
them to their language.

This means that, apart from discussing specific examples, when I talk about
“class,” “module,” “function,” etc., I use those terms in the general programming
meaning, not as specific terms of the JavaScript language model.

The fact that I’m using JavaScript as the example language also means that I
try to avoid JavaScript styles that will be less familiar to those who aren’t regular
JavaScript programmers. This is not a “refactoring in JavaScript” book—rather,
it’s a general refactoring book that happens to use JavaScript. There are many
interesting refactorings that are specific to JavaScript (such as refactoring from
callbacks, to promises, to async/await) but they are out of scope for this book.

Who Should Read This Book?

I’ve aimed this book at a professional programmer—someone who writes software
for a living. The examples and discussion include a lot of code to read and un-
derstand. The examples are in JavaScript, but should be applicable to most lan-
guages. I would expect a programmer to have some experience to appreciate
what’s going on with this book, but I don’t assume much knowledge.

Although the primary target of this book is a developer seeking to learn
about refactoring, this book is also valuable for someone who already understands
refactoring—it can be used as a teaching aid. In this book, I’ve put a lot of effort
into explaining how various refactorings work, so an experienced developer can
use this material in mentoring their colleagues.

Although it is focused on the code, refactoring has a large impact on the design
of system. It is vital for senior designers and architects to understand the
principles of refactoring and to use them in their projects. Refactoring is best in-
troduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace. This is particularly true when you are using a language other
than JavaScript, because you’ll have to adapt the examples I’ve given to other
languages.

Here’s how to get the most from this book without reading all of it.

If you want to understand what refactoring is, read Chapter 1—the example
should make the process clear.

If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

xviiPreface

ptg26261585

If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

If you want to actually do refactoring, read the first four chapters completely,
then skip-read the catalog. Read enough of the catalog to know, roughly,
what is in there. You don’t have to understand all the details. When you
actually need to carry out a refactoring, read the refactoring in detail and
use it to help you. The catalog is a reference section, so you probably won’t
want to read it in one go.

An important part of writing this book was naming the various refactorings.
Terminology helps us communicate, so that when one developer advises another
to extract some code into a function, or to split some computation into separate
phases, both understand the references to Extract Function (106) and Split Phase
(154). This vocabulary also helps in selecting automated refactorings.

Building on a Foundation Laid by Others

I need to say right at the beginning that I owe a big debt with this book—a debt
to those whose work in the 1990s developed the field of refactoring. It was
learning from their experience that inspired and informed me to write the first
edition of this book, and although many years have passed, it’s important that I
continue to acknowledge the foundation that they laid. Ideally, one of them
should have written that first edition, but I ended up being the one with the time
and energy.

Two of the leading early proponents of refactoring were Ward Cunningham
and Kent Beck. They used it as a foundation of development in the early
days and adapted their development processes to take advantage of it. In partic-
ular, it was my collaboration with Kent that showed me the importance of
refactoring—an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-Champaign
that is notable for its practical contributions to object technology. Ralph has long
been a champion of refactoring, and several of his students did vital early work
in this field. Bill Opdyke developed the first detailed written work on refactor-
ing in his doctoral thesis. John Brant and Don Roberts went beyond writing
words—they created the first automated refactoring tool, the Refactoring Browser,
for refactoring Smalltalk programs.

Many people have advanced the field of refactoring since the first edition of
this book. In particular, the work of those who have added automated refactorings
to development tools have contributed enormously to making programmers’ lives
easier. It’s easy for me to take it for granted that I can rename a widely used
function with a simple key sequence—but that ease relies on the efforts of IDE
teams whose work helps us all.

Prefacexviii

ptg26261585

Acknowledgments

Even with all that research to draw on, I still needed a lot of help to write this
book. The first edition drew greatly on experience and encouragement from
Kent Beck. He first introduced me to refactoring, inspired me to start writing
notes to record refactorings, and helped form them into finished prose. He came
up with the idea of Code Smells. I often feel he would have written the first
edition better than I had done—if we wasn’t writing the foundation book for
Extreme Programming instead.

All the technical book authors I know mention the big debt they owe to tech-
nical reviewers. We’ve all written works with big flaws that were only caught by
our peers acting as reviewers. I don’t do a lot of technical review work myself,
partly because I don’t think I’m very good at it, so I have a lot of admiration for
those who take it on. There’s not even a pittance to be made by reviewing
someone else’s book, so doing it is a great act of generosity.

When I started serious work on the book, I formed a mailing list of advisors
to give me feedback. As I made progress, I sent drafts of new material to this
group and asked them for their feedback. I want to thank the following for
posting their feedback on the mailing list: Arlo Belshee, Avdi Grimm, Beth
Anders-Beck, Bill Wake, Brian Guthrie, Brian Marick, Chad Wathington, Dave
Farley, David Rice, Don Roberts, Fred George, Giles Alexander, Greg Doench,
Hugo Corbucci, Ivan Moore, James Shore, Jay Fields, Jessica Kerr, Joshua
Kerievsky, Kevlin Henney, Luciano Ramalho, Marcos Brizeno, Michael Feathers,
Patrick Kua, Pete Hodgson, Rebecca Parsons, and Trisha Gee.

Of this group, I’d particularly like to highlight the special help I got on JavaScript
from Beth Anders-Beck, James Shore, and Pete Hodgson.

Once I had a pretty complete first draft, I sent it out for further review, because
I wanted to have some fresh eyes look at the draft as a whole. William Chargin
and Michael Hunger both delivered incredibly detailed review comments. I also
got many useful comments from Bob Martin and Scott Davis. Bill Wake added
to his contributions on the mailing list by doing a full review of the first draft.

My colleagues at ThoughtWorks are a constant source of ideas and feedback
on my writing. There are innumerable questions, comments, and observations
that have fueled the thinking and writing of this book. One of the great things
about being an employee at ThoughtWorks is that they allow me to spend con-
siderable time on writing. In particular, I appreciate the regular conversations
and ideas I get from Rebecca Parsons, our CTO.

At Pearson, Greg Doench is my acquisition editor, navigating many issues in
getting a book to publication. Julie Nahil is my production editor. I was glad
to again work with Dmitry Kirsanov for copyediting and Alina Kirsanova for
composition and indexing.

xixPreface

ptg26261585

This page intentionally left blank

ptg26261585

How do I begin to talk about refactoring? The traditional way is by introducing
the history of the subject, broad principles, and the like. When somebody does
that at a conference, I get slightly sleepy. My mind starts wandering, with a
low-priority background process polling the speaker until they give an example.

The examples wake me up because I can see what is going on. With principles,
it is too easy to make broad generalizations—and too hard to figure out how to
apply things. An example helps make things clear.

So I’m going to start this book with an example of refactoring. I’ll talk about
how refactoring works and will give you a sense of the refactoring process. I can
then do the usual principles-style introduction in the next chapter.

With any introductory example, however, I run into a problem. If I pick a large
program, describing it and how it is refactored is too complicated for a mortal
reader to work through. (I tried this with the original book—and ended up
throwing away two examples, which were still pretty small but took over a hun-
dred pages each to describe.) However, if I pick a program that is small enough
to be comprehensible, refactoring does not look like it is worthwhile.

I’m thus in the classic bind of anyone who wants to describe techniques that
are useful for real-world programs. Frankly, it is not worth the effort to do all
the refactoring that I’m going to show you on the small program I will be using.
But if the code I’m showing you is part of a larger system, then the refactoring
becomes important. Just look at my example and imagine it in the context of a
much larger system.

The Starting Point

In the first edition of this book, my starting program printed a bill from a video
rental store, which may now lead many of you to ask: “What’s a video rental
store?” Rather than answer that question, I’ve reskinned the example to something
that is both older and still current.

1

Chapter 1

Refactoring: A First Example

ptg26261585

Image a company of theatrical players who go out to various events performing
plays. Typically, a customer will request a few plays and the company charges
them based on the size of the audience and the kind of play they perform. There
are currently two kinds of plays that the company performs: tragedies and
comedies. As well as providing a bill for the performance, the company gives its
customers “volume credits” which they can use for discounts on future perfor-
mances—think of it as a customer loyalty mechanism.

The performers store data about their plays in a simple JSON file that looks
something like this:

plays.json…
 {
 "hamlet": {"name": "Hamlet", "type": "tragedy"},
 "as-like": {"name": "As You Like It", "type": "comedy"},
 "othello": {"name": "Othello", "type": "tragedy"}
 }

The data for their bills also comes in a JSON file:

invoices.json…
 [
 {
 "customer": "BigCo",
 "performances": [
 {
 "playID": "hamlet",
 "audience": 55
 },
 {
 "playID": "as-like",
 "audience": 35
 },
 {
 "playID": "othello",
 "audience": 40
 }
]
 }
]

The code that prints the bill is this simple function:

 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

Chapter 1 Refactoring: A First Example2

ptg26261585

 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = 0;

 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;
 }

Running that code on the test data files above results in the following output:

 Statement for BigCo
 Hamlet: $650.00 (55 seats)
 As You Like It: $580.00 (35 seats)
 Othello: $500.00 (40 seats)
 Amount owed is $1,730.00
 You earned 47 credits

Comments on the Starting Program

What are your thoughts on the design of this program? The first thing I’d say is
that it’s tolerable as it is—a program so short doesn’t require any deep structure
to be comprehensible. But remember my earlier point that I have to keep examples

3Comments on the Starting Program

ptg26261585

small. Imagine this program on a larger scale—perhaps hundreds of lines long.
At that size, a single inline function is hard to understand.

Given that the program works, isn’t any statement about its structure merely
an aesthetic judgment, a dislike of “ugly” code? After all, the compiler doesn’t
care whether the code is ugly or clean. But when I change the system, there is
a human involved, and humans do care. A poorly designed system is hard to
change—because it is difficult to figure out what to change and how these changes
will interact with the existing code to get the behavior I want. And if it is hard
to figure out what to change, there is a good chance that I will make mistakes
and introduce bugs.

Thus, if I’m faced with modifying a program with hundreds of lines of code,
I’d rather it be structured into a set of functions and other program elements that
allow me to understand more easily what the program is doing. If the program
lacks structure, it’s usually easier for me to add structure to the program first,
and then make the change I need.

When you have to add a fea-
ture to a program but the code
is not structured in a conve-
nient way, first refactor the
program to make it easy to add
the feature, then add the
feature.

In this case, I have a couple of changes
that the users would like to make. First,
they want a statement printed in HTML.
Consider what impact this change would
have. I’m faced with adding conditional
statements around every statement that
adds a string to the result. That will add
a host of complexity to the function.
Faced with that, most people prefer to
copy the method and change it to emit
HTML. Making a copy may not seem too
onerous a task, but it sets up all sorts of

problems for the future. Any changes to the charging logic would force me to
update both methods—and to ensure they are updated consistently. If I’m writing
a program that will never change again, this kind of copy-and-paste is fine. But
if it’s a long-lived program, then duplication is a menace.

This brings me to a second change. The players are looking to perform more
kinds of plays: they hope to add history, pastoral, pastoral-comical, historical-
pastoral, tragical-historical, tragical-comical-historical-pastoral, scene individable,
and poem unlimited to their repertoire. They haven’t exactly decided yet what
they want to do and when. This change will affect both the way their plays are
charged for and the way volume credits are calculated. As an experienced devel-
oper I can be sure that whatever scheme they come up with, they will change it
again within six months. After all, when feature requests come, they come not
as single spies but in battalions.

Again, that statement method is where the changes need to be made to deal with
changes in classification and charging rules. But if I copy statement to htmlStatement,
I’d need to ensure that any changes are consistent. Furthermore, as the rules

Chapter 1 Refactoring: A First Example4

ptg26261585

grow in complexity, it’s going to be harder to figure out where to make the
changes and harder to do them without making a mistake.

Let me stress that it’s these changes that drive the need to perform refactoring.
If the code works and doesn’t ever need to change, it’s perfectly fine to leave it
alone. It would be nice to improve it, but unless someone needs to understand
it, it isn’t causing any real harm. Yet as soon as someone does need to under-
stand how that code works, and struggles to follow it, then you have to do
something about it.

The First Step in Refactoring

Whenever I do refactoring, the first step is always the same. I need to ensure I
have a solid set of tests for that section of code. The tests are essential because
even though I will follow refactorings structured to avoid most of the opportunities
for introducing bugs, I’m still human and still make mistakes. The larger a pro-
gram, the more likely it is that my changes will cause something to break
inadvertently—in the digital age, frailty’s name is software.

Since the statement returns a string, what I do is create a few invoices, give each
invoice a few performances of various kinds of plays, and generate the statement
strings. I then do a string comparison between the new string and some refer-
ence strings that I have hand-checked. I set up all of these tests using a testing
framework so I can run them with just a simple keystroke in my development
environment. The tests take only a few seconds to run, and as you will see, I run
them often.

An important part of the tests is the way they report their results. They either
go green, meaning that all the strings are identical to the reference strings, or
red, showing a list of failures—the lines that turned out differently. The tests are
thus self-checking. It is vital to make tests self-checking. If I don’t, I’d end up
spending time hand-checking values from the test against values on a desk pad,
and that would slow me down. Modern testing frameworks provide all the features
needed to write and run self-checking tests.

Before you start refactoring,
make sure you have a solid
suite of tests. These tests must
be self-checking.

As I do the refactoring, I’ll lean on the
tests. I think of them as a bug detector
to protect me against my own mistakes.
By writing what I want twice, in the code
and in the test, I have to make the mis-
take consistently in both places to fool
the detector. By double-checking my
work, I reduce the chance of doing
something wrong. Although it takes time to build the tests, I end up saving that
time, with considerable interest, by spending less time debugging. This is such
an important part of refactoring that I devote a full chapter to it (Building Tests
(85)).

5The First Step in Refactoring

ptg26261585

Decomposing the statement Function

When refactoring a long function like this, I mentally try to identify points that
separate different parts of the overall behavior. The first chunk that leaps to my
eye is the switch statement in the middle.

function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = 0;

 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;
}

Chapter 1 Refactoring: A First Example6

ptg26261585

As I look at this chunk, I conclude that it’s calculating the charge for one per-
formance. That conclusion is a piece of insight about the code. But as Ward
Cunningham puts it, this understanding is in my head—a notoriously volatile
form of storage. I need to persist it by moving it from my head back into the
code itself. That way, should I come back to it later, the code will tell me what
it’s doing—I don’t have to figure it out again.

The way to put that understanding into code is to turn that chunk of code into
its own function, naming it after what it does—something like amountFor(aPerformance).
When I want to turn a chunk of code into a function like this, I have a procedure
for doing it that minimizes my chances of getting it wrong. I wrote down this
procedure and, to make it easy to reference, named it Extract Function (106).

First, I need to look in the fragment for any variables that will no longer be in
scope once I’ve extracted the code into its own function. In this case, I have three:
perf, play, and thisAmount. The first two are used by the extracted code, but not
modified, so I can pass them in as parameters. Modified variables need more
care. Here, there is only one, so I can return it. I can also bring its initialization
inside the extracted code. All of which yields this:

function statement…
 function amountFor(perf, play) {
 let thisAmount = 0;
 switch (play.type) {
 case "tragedy":
 thisAmount = 40000;
 if (perf.audience > 30) {
 thisAmount += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":
 thisAmount = 30000;
 if (perf.audience > 20) {
 thisAmount += 10000 + 500 * (perf.audience - 20);
 }
 thisAmount += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return thisAmount;
 }

When I use a header like “function someName…” in italics for some code, that means
that the following code is within the scope of the function, file, or class named in the
header. There is usually other code within that scope that I won’t show, as I’m not
discussing it at the moment.

The original statement code now calls this function to populate thisAmount:

7Decomposing the statement Function

ptg26261585

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = plays[perf.playID];
 let thisAmount = amountFor(perf, play);

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Once I’ve made this change, I immediately compile and test to see if I’ve broken
anything. It’s an important habit to test after every refactoring, however simple.
Mistakes are easy to make—at least, I find them easy to make. Testing after each
change means that when I make a mistake, I only have a small change to consider
in order to spot the error, which makes it far easier to find and fix. This is the
essence of the refactoring process: small changes and testing after each change.
If I try to do too much, making a mistake will force me into a tricky debugging
episode that can take a long time. Small changes, enabling a tight feedback loop,
are the key to avoiding that mess.

I use compile here to mean doing whatever is needed to make the JavaScript executable.
Since JavaScript is directly executable, that may mean nothing, but in other cases it
may mean moving code to an output directory and/or using a processor such as Babel
[babel].

Refactoring changes the pro-
grams in small steps, so if you
make a mistake, it is easy to
find where the bug is.

This being JavaScript, I can extract
amountFor into a nested function of statement.
This is helpful as it means I don’t have
to pass data that’s inside the scope of the
containing function to the newly
extracted function. That doesn’t make a
difference in this case, but it’s one less
issue to deal with.

Chapter 1 Refactoring: A First Example8

ptg26261585

In this case the tests passed, so my next step is to commit the change to my
local version control system. I use a version control system, such as git or mercu-
rial, that allows me to make private commits. I commit after each successful
refactoring, so I can easily get back to a working state should I mess up later. I
then squash changes into more significant commits before I push the changes to
a shared repository.

Extract Function (106) is a common refactoring to automate. If I was programming
in Java, I would have instinctively reached for the key sequence for my IDE to
perform this refactoring. As I write this, there is no such robust support for this
refactoring in JavaScript tools, so I have to do this manually. It’s not hard, although
I have to be careful with those locally scoped variables.

Once I’ve used Extract Function (106), I take a look at what I’ve extracted to see
if there are any quick and easy things I can do to clarify the extracted function.
The first thing I do is rename some of the variables to make them clearer, such
as changing thisAmount to result.

function statement…
 function amountFor(perf, play) {
 let result = 0;
 switch (play.type) {
 case "tragedy":

result = 40000;
 if (perf.audience > 30) {

result += 1000 * (perf.audience - 30);
 }
 break;
 case "comedy":

result = 30000;
 if (perf.audience > 20) {

result += 10000 + 500 * (perf.audience - 20);
 }

result += 300 * perf.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return result;
 }

It’s my coding standard to always call the return value from a function “result”.
That way I always know its role. Again, I compile, test, and commit. Then I move
onto the first argument.

9Decomposing the statement Function

ptg26261585

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${play.type}`);
 }
 return result;
 }

Again, this is following my coding style. With a dynamically typed language
such as JavaScript, it’s useful to keep track of types—hence, my default name for
a parameter includes the type name. I use an indefinite article with it unless there
is some specific role information to capture in the name. I learned this convention
from Kent Beck [Beck SBPP] and continue to find it helpful.

Any fool can write code that a
computer can understand.
Good programmers write code
that humans can understand.

Is this renaming worth the effort? Ab-
solutely. Good code should clearly com-
municate what it is doing, and variable
names are a key to clear code. Never be
afraid to change names to improve
clarity. With good find-and-replace tools,
it is usually not difficult; testing, and
static typing in a language that supports

it, will highlight any occurrences you miss. And with automated refactoring tools,
it’s trivial to rename even widely used functions.

The next item to consider for renaming is the play parameter, but I have a
different fate for that.

Removing the play Variable

As I consider the parameters to amountFor, I look to see where they come from.
aPerformance comes from the loop variable, so naturally changes with each iteration

Chapter 1 Refactoring: A First Example10

ptg26261585

through the loop. But play is computed from the performance, so there’s no need
to pass it in as a parameter at all—I can just recalculate it within amountFor. When
I’m breaking down a long function, I like to get rid of variables like play, because
temporary variables create a lot of locally scoped names that complicate
extractions. The refactoring I will use here is Replace Temp with Query (178).

I begin by extracting the right-hand side of the assignment into a function.

function statement…
 function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 const play = playFor(perf);
 let thisAmount = amountFor(perf, play);

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I compile-test-commit, and then use Inline Variable (123).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

11Decomposing the statement Function

ptg26261585

 for (let perf of invoice.performances) {
const play = playFor(perf);

 let thisAmount = amountFor(perf, playFor(perf));

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I compile-test-commit. With that inlined, I can then apply Change Function
Declaration (124) to amountFor to remove the play parameter. I do this in two steps.
First, I use the new function inside amountFor.

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }

I compile-test-commit, and then delete the parameter.

Chapter 1 Refactoring: A First Example12

ptg26261585

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 let thisAmount = amountFor(perf, playFor(perf));

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
 totalAmount += thisAmount;
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

function statement…
 function amountFor(aPerformance, play) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }

And compile-test-commit again.

13Decomposing the statement Function

ptg26261585

This refactoring alarms some programmers. Previously, the code to look up
the play was executed once in each loop iteration; now, it’s executed thrice. I’ll
talk about the interplay of refactoring and performance later, but for the moment
I’ll just observe that this change is unlikely to significantly affect performance,
and even if it were, it is much easier to improve the performance of a well-factored
code base.

The great benefit of removing local variables is that it makes it much easier to
do extractions, since there is less local scope to deal with. Indeed, usually I’ll
take out local variables before I do any extractions.

Now that I’m done with the arguments to amountFor, I look back at where it’s
called. It’s being used to set a temporary variable that’s not updated again, so I
apply Inline Variable (123).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Extracting Volume Credits

Here’s the current state of the statement function body:

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;

Chapter 1 Refactoring: A First Example14

ptg26261585

 for (let perf of invoice.performances) {

 // add volume credits
 volumeCredits += Math.max(perf.audience - 30, 0);
 // add extra credit for every ten comedy attendees
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Now I get the benefit from removing the play variable as it makes it easier to
extract the volume credits calculation by removing one of the locally scoped
variables.

I still have to deal with the other two. Again, perf is easy to pass in, but
volumeCredits is a bit more tricky as it is an accumulator updated in each pass of
the loop. So my best bet is to initialize a shadow of it inside the extracted function
and return it.

function statement…
 function volumeCreditsFor(perf) {
 let volumeCredits = 0;
 volumeCredits += Math.max(perf.audience - 30, 0);
 if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);
 return volumeCredits;
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

I remove the unnecessary (and, in this case, downright misleading) comment.

15Decomposing the statement Function

ptg26261585

I compile-test-commit that, and then rename the variables inside the new
function.

function statement…
 function volumeCreditsFor(aPerformance) {
 let result = 0;

result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

I’ve shown it in one step, but as before I did the renames one at a time, with
a compile-test-commit after each.

Removing the format Variable

Let’s look at the main statement method again:

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 const format = new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

As I suggested before, temporary variables can be a problem. They are only
useful within their own routine, and therefore they encourage long, complex
routines. My next move, then, is to replace some of them. The easiest one is
format. This is a case of assigning a function to a temp, which I prefer to replace
with a declared function.

function statement…
 function format(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber);
 }

Chapter 1 Refactoring: A First Example16

ptg26261585

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${format(totalAmount/100)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Although changing a function variable to a declared function is a refactoring, I haven’t
named it and included it in the catalog. There are many refactorings that I didn’t feel
important enough for that. This one is both simple to do and relatively rare, so I didn’t
think it was worthwhile.

I’m not keen on the name—“format” doesn’t really convey enough of what it’s
doing. “formatAsUSD” would be a bit too long-winded since it’s being used in a
string template, particularly within this small scope. I think the fact that it’s for-
matting a currency amount is the thing to highlight here, so I pick a name that
suggests that and apply Change Function Declaration (124).

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

function statement…
 function usd(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

17Decomposing the statement Function

ptg26261585

Naming is both important and tricky. Breaking a large function into smaller
ones only adds value if the names are good. With good names, I don’t have to
read the body of the function to see what it does. But it’s hard to get names right
the first time, so I use the best name I can think of for the moment, and don’t
hesitate to rename it later. Often, it takes a second pass through some code to
realize what the best name really is.

As I’m changing the name, I also move the duplicated division by 100 into the
function. Storing money as integer cents is a common approach—it avoids
the dangers of storing fractional monetary values as floats but allows me to use
arithmetic operators. Whenever I want to display such a penny-integer number,
however, I need a decimal, so my formatting function should take care of the
division.

Removing Total Volume Credits

My next target variable is volumeCredits. This is a trickier case, as it’s built up during
the iterations of the loop. My first move, then, is to use Split Loop (227) to
separate the accumulation of volumeCredits.

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let volumeCredits = 0;
 let result = `Statement for ${invoice.customer}\n`;

 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

With that done, I can use Slide Statements (223) to move the declaration of the
variable next to the loop.

Chapter 1 Refactoring: A First Example18

ptg26261585

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 let volumeCredits = 0;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Gathering together everything that updates the volumeCredits variable makes it
easier to do Replace Temp with Query (178). As before, the first step is to apply
Extract Function (106) to the overall calculation of the variable.

function statement…
 function totalVolumeCredits() {
 let volumeCredits = 0;
 for (let perf of invoice.performances) {
 volumeCredits += volumeCreditsFor(perf);
 }
 return volumeCredits;
 }

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }
 let volumeCredits = totalVolumeCredits();
 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${volumeCredits} credits\n`;
 return result;

Once everything is extracted, I can apply Inline Variable (123):

19Decomposing the statement Function

ptg26261585

top level…
 function statement (invoice, plays) {
 let totalAmount = 0;
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {

 // print line for this order
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 totalAmount += amountFor(perf);
 }

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

Let me pause for a bit to talk about what I’ve just done here. Firstly, I know
readers will again be worrying about performance with this change, as many
people are wary of repeating a loop. But most of the time, rerunning a loop like
this has a negligible effect on performance. If you timed the code before and
after this refactoring, you would probably not notice any significant change in
speed—and that’s usually the case. Most programmers, even experienced ones,
are poor judges of how code actually performs. Many of our intuitions are broken
by clever compilers, modern caching techniques, and the like. The performance
of software usually depends on just a few parts of the code, and changes anywhere
else don’t make an appreciable difference.

But “mostly” isn’t the same as “alwaysly.” Sometimes a refactoring will have a
significant performance implication. Even then, I usually go ahead and do it, be-
cause it’s much easier to tune the performance of well-factored code. If I introduce
a significant performance issue during refactoring, I spend time on performance
tuning afterwards. It may be that this leads to reversing some of the refactoring
I did earlier—but most of the time, due to the refactoring, I can apply a more ef-
fective performance-tuning enhancement instead. I end up with code that’s both
clearer and faster.

So, my overall advice on performance with refactoring is: Most of the time you
should ignore it. If your refactoring introduces performance slow-downs, finish
refactoring first and do performance tuning afterwards.

The second aspect I want to call your attention to is how small the steps were
to remove volumeCredits. Here are the four steps, each followed by compiling, testing,
and committing to my local source code repository:

Split Loop (227) to isolate the accumulation

Slide Statements (223) to bring the initializing code next to the accumulation

Extract Function (106) to create a function for calculating the total

Inline Variable (123) to remove the variable completely

Chapter 1 Refactoring: A First Example20

ptg26261585

I confess I don’t always take quite as short steps as these—but whenever things
get difficult, my first reaction is to take shorter steps. In particular, should a test
fail during a refactoring, if I can’t immediately see and fix the problem, I’ll revert
to my last good commit and redo what I just did with smaller steps. That works
because I commit so frequently and because small steps are the key to moving
quickly, particularly when working with difficult code.

I then repeat that sequence to remove totalAmount. I start by splitting the loop
(compile-test-commit), then I slide the variable initialization (compile-test-commit),
and then I extract the function. There is a wrinkle here: The best name for the
function is “totalAmount”, but that’s the name of the variable, and I can’t have
both at the same time. So I give the new function a random name when I extract
it (and compile-test-commit).

function statement…
 function appleSauce() {
 let totalAmount = 0;
 for (let perf of invoice.performances) {
 totalAmount += amountFor(perf);
 }
 return totalAmount;
 }

top level…
 function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 let totalAmount = appleSauce();

 result += `Amount owed is ${usd(totalAmount)}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

Then I inline the variable (compile-test-commit) and rename the function to
something more sensible (compile-test-commit).

top level…
 function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

21Decomposing the statement Function

ptg26261585

function statement…
 function totalAmount() {
 let totalAmount = 0;
 for (let perf of invoice.performances) {
 totalAmount += amountFor(perf);
 }
 return totalAmount;
 }

I also take the opportunity to change the names inside my extracted functions
to adhere to my convention.

function statement…
 function totalAmount() {
 let result = 0;
 for (let perf of invoice.performances) {

result += amountFor(perf);
 }
 return result;
 }
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {

result += volumeCreditsFor(perf);
 }
 return result;
 }

Status: Lots of Nested Functions

Now is a good time to pause and take a look at the overall state of the code:

function statement (invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += amountFor(perf);
 }
 return result;
 }

Chapter 1 Refactoring: A First Example22

ptg26261585

function totalVolumeCredits() {
 let result = 0;
 for (let perf of invoice.performances) {
 result += volumeCreditsFor(perf);
 }
 return result;
 }

function usd(aNumber) {
 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (playFor(aPerformance).type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${playFor(aPerformance).type}`);
 }
 return result;
 }
 }

The structure of the code is much better now. The top-level statement function
is now just seven lines of code, and all it does is laying out the printing of the
statement. All the calculation logic has been moved out to a handful of supporting
functions. This makes it easier to understand each individual calculation as well
as the overall flow of the report.

23Status: Lots of Nested Functions

ptg26261585

Splitting the Phases of Calculation and Formatting

So far, my refactoring has focused on adding enough structure to the function so
that I can understand it and see it in terms of its logical parts. This is often the
case early in refactoring. Breaking down complicated chunks into small pieces is
important, as is naming things well. Now, I can begin to focus more on the
functionality change I want to make—specifically, providing an HTML version of
this statement. In many ways, it’s now much easier to do. With all the calculation
code split out, all I have to do is write an HTML version of the seven lines
of code at the top. The problem is that these broken-out functions are nested
within the textual statement method, and I don’t want to copy and paste them
into a new function, however well organized. I want the same calculation functions
to be used by the text and HTML versions of the statement.

There are various ways to do this, but one of my favorite techniques is Split
Phase (154). My aim here is to divide the logic into two parts: one that calculates
the data required for the statement, the other that renders it into text or HTML.
The first phase creates an intermediate data structure that it passes to the second.

I start a Split Phase (154) by applying Extract Function (106) to the code that
makes up the second phase. In this case, that’s the statement printing code, which
is in fact the entire content of statement. This, together with all the nested functions,
goes into its own top-level function which I call renderPlainText.

function statement (invoice, plays) {
 return renderPlainText(invoice, plays);
}

function renderPlainText(invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {...}
 function totalVolumeCredits() {...}
 function usd(aNumber) {...}
 function volumeCreditsFor(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}

Chapter 1 Refactoring: A First Example24

ptg26261585

I do my usual compile-test-commit, then create an object that will act as my
intermediate data structure between the two phases. I pass this data object in as
an argument to renderPlainText (compile-test-commit).

function statement (invoice, plays) {
 const statementData = {};
 return renderPlainText(statementData, invoice, plays);
}

function renderPlainText(data, invoice, plays) {
 let result = `Statement for ${invoice.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function totalAmount() {...}
 function totalVolumeCredits() {...}
 function usd(aNumber) {...}
 function volumeCreditsFor(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}

I now examine the other arguments used by renderPlainText. I want to move
the data that comes from them into the intermediate data structure, so that all the
calculation code moves into the statement function and renderPlainText operates
solely on data passed to it through the data parameter.

My first move is to take the customer and add it to the intermediate object
(compile-test-commit).

function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 return renderPlainText(statementData, invoice, plays);
}

function renderPlainText(data, invoice, plays) {
 let result = `Statement for ${data.customer}\n`;
 for (let perf of invoice.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

25Splitting the Phases of Calculation and Formatting

ptg26261585

Similarly, I add the performances, which allows me to delete the invoice
parameter to renderPlainText (compile-test-commit).

top level…
 function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances;
 return renderPlainText(statementData, invoice, plays);
 }

 function renderPlainText(data, plays) {
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

function renderPlainText…
 function totalAmount() {
 let result = 0;
 for (let perf of data.performances) {
 result += amountFor(perf);
 }
 return result;
 }
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of data.performances) {
 result += volumeCreditsFor(perf);
 }
 return result;
 }

Now I’d like the play name to come from the intermediate data. To do this, I
need to enrich the performance record with data from the play (compile-test-
commit).

Chapter 1 Refactoring: A First Example26

ptg26261585

function statement (invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 return renderPlainText(statementData, plays);

 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 return result;
 }

At the moment, I’m just making a copy of the performance object, but I’ll
shortly add data to this new record. I take a copy because I don’t want to modify
the data passed into the function. I prefer to treat data as immutable as much as
I can—mutable state quickly becomes something rotten.

The idiom result = Object.assign({}, aPerformance) looks very odd to people unfamiliar to
JavaScript. It performs a shallow copy. I’d prefer to have a function for this, but it’s one
of those cases where the idiom is so baked into JavaScript usage that writing my own
function would look out of place for JavaScript programmers.

Now I have a spot for the play, I need to add it. To do that, I need to apply
Move Function (198) to playFor and statement (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID];
 }

I then replace all the references to playFor in renderPlainText to use the data instead
(compile-test-commit).

27Splitting the Phases of Calculation and Formatting

ptg26261585

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

 function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

 function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

I then move amountFor in a similar way (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 return result;
 }

function amountFor(aPerformance) {...}

Chapter 1 Refactoring: A First Example28

ptg26261585

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(totalAmount())}\n`;
 result += `You earned ${totalVolumeCredits()} credits\n`;
 return result;

 function totalAmount() {
 let result = 0;
 for (let perf of data.performances) {
 result += perf.amount;
 }
 return result;
 }

Next, I move the volume credits calculation (compile-test-commit).

function statement…
 function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

function volumeCreditsFor(aPerformance) {...}

function renderPlainText…
 function totalVolumeCredits() {
 let result = 0;
 for (let perf of data.performances) {
 result += perf.volumeCredits;
 }
 return result;
 }

Finally, I move the two calculations of the totals.

function statement…
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 statementData.totalAmount = totalAmount(statementData);
 statementData.totalVolumeCredits = totalVolumeCredits(statementData);
 return renderPlainText(statementData, plays);

 function totalAmount(data) {...}
 function totalVolumeCredits(data) {...}

29Splitting the Phases of Calculation and Formatting

ptg26261585

function renderPlainText…
 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(data.totalAmount)}\n`;
 result += `You earned ${data.totalVolumeCredits} credits\n`;
 return result;

Although I could have modified the bodies of these totals functions to use the
statementData variable (as it’s within scope), I prefer to pass the explicit parameter.

And, once I’m done with compile-test-commit after the move, I can’t resist a
couple quick shots of Replace Loop with Pipeline (231).

function renderPlainText…
 function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }
 function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

I now extract all the first-phase code into its own function (compile-test-commit).

top level…
 function statement (invoice, plays) {
 return renderPlainText(createStatementData(invoice, plays));
 }

 function createStatementData(invoice, plays) {
 const statementData = {};
 statementData.customer = invoice.customer;
 statementData.performances = invoice.performances.map(enrichPerformance);
 statementData.totalAmount = totalAmount(statementData);
 statementData.totalVolumeCredits = totalVolumeCredits(statementData);
 return statementData;

Since it’s clearly separate now, I move it to its own file (and alter the name of
the returned result to match my usual convention).

statement.js…
 import createStatementData from './createStatementData.js';

Chapter 1 Refactoring: A First Example30

ptg26261585

createStatementData.js…
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

 function enrichPerformance(aPerformance) {...}
 function playFor(aPerformance) {...}
 function amountFor(aPerformance) {...}
 function volumeCreditsFor(aPerformance) {...}
 function totalAmount(data) {...}
 function totalVolumeCredits(data) {...}

One final swing of compile-test-commit—and now it’s easy to write an HTML
version.

statement.js…
 function htmlStatement (invoice, plays) {
 return renderHtml(createStatementData(invoice, plays));
 }
 function renderHtml (data) {
 let result = `<h1>Statement for ${data.customer}</h1>\n`;
 result += "<table>\n";
 result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
 for (let perf of data.performances) {
 result += ` <tr><td>${perf.play.name}</td><td>${perf.audience}</td>`;
 result += `<td>${usd(perf.amount)}</td></tr>\n`;
 }
 result += "</table>\n";
 result += `<p>Amount owed is ${usd(data.totalAmount)}</p>\n`;
 result += `<p>You earned ${data.totalVolumeCredits} credits</p>\n`;
 return result;
 }

function usd(aNumber) {...}

(I moved usd to the top level, so that renderHtml could use it.)

Status: Separated into Two Files (and Phases)

This is a good moment to take stock again and think about where the code is
now. I have two files of code.

31Status: Separated into Two Files (and Phases)

ptg26261585

statement.js
 import createStatementData from './createStatementData.js';
function statement (invoice, plays) {

 return renderPlainText(createStatementData(invoice, plays));
 }
function renderPlainText(data, plays) {

 let result = `Statement for ${data.customer}\n`;
 for (let perf of data.performances) {
 result += ` ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n`;
 }
 result += `Amount owed is ${usd(data.totalAmount)}\n`;
 result += `You earned ${data.totalVolumeCredits} credits\n`;
 return result;
 }
function htmlStatement (invoice, plays) {

 return renderHtml(createStatementData(invoice, plays));
 }
function renderHtml (data) {

 let result = `<h1>Statement for ${data.customer}</h1>\n`;
 result += "<table>\n";
 result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
 for (let perf of data.performances) {
 result += ` <tr><td>${perf.play.name}</td><td>${perf.audience}</td>`;
 result += `<td>${usd(perf.amount)}</td></tr>\n`;
 }
 result += "</table>\n";
 result += `<p>Amount owed is ${usd(data.totalAmount)}</p>\n`;
 result += `<p>You earned ${data.totalVolumeCredits} credits</p>\n`;
 return result;
 }
function usd(aNumber) {

 return new Intl.NumberFormat("en-US",
 { style: "currency", currency: "USD",
 minimumFractionDigits: 2 }).format(aNumber/100);
 }

createStatementData.js
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

Chapter 1 Refactoring: A First Example32

ptg26261585

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

I have more code than I did when I started: 70 lines (not counting htmlStatement)
as opposed to 44, mostly due to the extra wrapping involved in putting things
in functions. If all else is equal, more code is bad—but rarely is all else equal.
The extra code breaks up the logic into identifiable parts, separating the calcula-
tions of the statements from the layout. This modularity makes it easier for me
to understand the parts of the code and how they fit together. Brevity is the soul
of wit, but clarity is the soul of evolvable software. Adding this modularity allows
to me to support the HTML version of the code without any duplication of the
calculations.

33Status: Separated into Two Files (and Phases)

ptg26261585

When programming, follow the
camping rule: Always leave the
code base healthier than when
you found it.

There are more things I could do to
simplify the printing logic, but this will
do for the moment. I always have to
strike a balance between all the refactor-
ings I could do and adding new features.
At the moment, most people under-
prioritize refactoring—but there still is a
balance. My rule is a variation on the

camping rule: Always leave the code base healthier than when you found it. It
will never be perfect, but it should be better.

Reorganizing the Calculations by Type

Now I’ll turn my attention to the next feature change: supporting more categories
of plays, each with its own charging and volume credits calculations. At the mo-
ment, to make changes here I have to go into the calculation functions and edit
the conditions in there. The amountFor function highlights the central role the type
of play has in the choice of calculations—but conditional logic like this tends to
decay as further modifications are made unless it’s reinforced by more structural
elements of the programming language.

There are various ways to introduce structure to make this explicit, but in this
case a natural approach is type polymorphism—a prominent feature of classical
object-orientation. Classical OO has long been a controversial feature in the
JavaScript world, but the ECMAScript 2015 version provides a sound syntax and
structure for it. So it makes sense to use it in a right situation—like this one.

My overall plan is to set up an inheritance hierarchy with comedy and tragedy
subclasses that contain the calculation logic for those cases. Callers call a poly-
morphic amount function that the language will dispatch to the different calcula-
tions for the comedies and tragedies. I’ll make a similar structure for the volume
credits calculation. To do this, I utilize a couple of refactorings. The core refactor-
ing is Replace Conditional with Polymorphism (272), which changes a hunk of con-
ditional code with polymorphism. But before I can do Replace Conditional with
Polymorphism (272), I need to create an inheritance structure of some kind. I need
to create a class to host the amount and volume credit functions.

I begin by reviewing the calculation code. (One of the pleasant consequences
of the previous refactoring is that I can now ignore the formatting code, so long
as I produce the same output data structure. I can further support this by adding
tests that probe the intermediate data structure.)

Chapter 1 Refactoring: A First Example34

ptg26261585

createStatementData.js…
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function amountFor(aPerformance) {
 let result = 0;
 switch (aPerformance.play.type) {
 case "tragedy":
 result = 40000;
 if (aPerformance.audience > 30) {
 result += 1000 * (aPerformance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (aPerformance.audience > 20) {
 result += 10000 + 500 * (aPerformance.audience - 20);
 }
 result += 300 * aPerformance.audience;
 break;
 default:
 throw new Error(`unknown type: ${aPerformance.play.type}`);
 }
 return result;
 }

function volumeCreditsFor(aPerformance) {
 let result = 0;
 result += Math.max(aPerformance.audience - 30, 0);
 if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
 return result;
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

35Reorganizing the Calculations by Type

ptg26261585

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }

Creating a Performance Calculator

The enrichPerformance function is the key, since it populates the intermediate data
structure with the data for each performance. Currently, it calls the conditional
functions for amount and volume credits. What I need it to do is call
those functions on a host class. Since that class hosts functions for calculating
data about performances, I’ll call it a performance calculator.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance);
 const result = Object.assign({}, aPerformance);
 result.play = playFor(result);
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

top level…
 class PerformanceCalculator {
 constructor(aPerformance) {
 this.performance = aPerformance;
 }
 }

So far, this new object isn’t doing anything. I want to move behavior into
it—and I’d like to start with the simplest thing to move, which is the play record.
Strictly, I don’t need to do this, as it’s not varying polymorphically, but this way
I’ll keep all the data transforms in one place, and that consistency will make the
code clearer.

To make this work, I will use Change Function Declaration (124) to pass the
performance’s play into the calculator.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = amountFor(result);
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

Chapter 1 Refactoring: A First Example36

ptg26261585

class PerformanceCalculator…
 class PerformanceCalculator {
 constructor(aPerformance, aPlay) {
 this.performance = aPerformance;
 this.play = aPlay;
 }
 }

(I’m not saying compile-test-commit all the time any more, as I suspect
you’re getting tired of reading it. But I still do it at every opportunity. I do some-
times get tired of doing it—and give mistakes the chance to bite me. Then
I learn and get back into the rhythm.)

Moving Functions into the Calculator

The next bit of logic I move is rather more substantial for calculating the amount
for a performance. I’ve moved functions around casually while rearranging nested
functions—but this is a deeper change in the context of the function, so I’ll step
through the Move Function (198) refactoring. The first part of this refactoring is
to copy the logic over to its new context—the calculator class. Then, I adjust the
code to fit into its new home, changing aPerformance to this.performance and
playFor(aPerformance) to this.play.

class PerformanceCalculator…
 get amount() {
 let result = 0;
 switch (this.play.type) {
 case "tragedy":
 result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 break;
 case "comedy":
 result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 break;
 default:
 throw new Error(`unknown type: ${this.play.type}`);
 }
 return result;
 }

I can compile at this point to check for any compile-time errors. “Compiling”
in my development environment occurs as I execute the code, so what I actually

37Reorganizing the Calculations by Type

ptg26261585

do is run Babel [babel]. That will be enough to catch any syntax errors in the
new function—but little more than that. Even so, that can be a useful step.

Once the new function fits its home, I take the original function and turn it
into a delegating function so it calls the new function.

function createStatementData…
 function amountFor(aPerformance) {
 return new PerformanceCalculator(aPerformance, playFor(aPerformance)).amount;
 }

Now I can compile-test-commit to ensure the code is working properly in its
new home. With that done, I use Inline Function (115) to call the new function
directly (compile-test-commit).

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = volumeCreditsFor(result);
 return result;
 }

I repeat the same process to move the volume credits calculation.

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

class PerformanceCalculator…
 get volumeCredits() {
 let result = 0;
 result += Math.max(this.performance.audience - 30, 0);
 if ("comedy" === this.play.type) result += Math.floor(this.performance.audience / 5);
 return result;
 }

Making the Performance Calculator Polymorphic

Now that I have the logic in a class, it’s time to apply the polymorphism. The
first step is to use Replace Type Code with Subclasses (362) to introduce subclasses
instead of the type code. For this, I need to create subclasses of the performance

Chapter 1 Refactoring: A First Example38

ptg26261585

calculator and use the appropriate subclass in createPerformanceData. In order to get
the right subclass, I need to replace the constructor call with a function, since
JavaScript constructors can’t return subclasses. So I use Replace Constructor with
Factory Function (334).

function createStatementData…
 function enrichPerformance(aPerformance) {
 const calculator = createPerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

top level…
 function createPerformanceCalculator(aPerformance, aPlay) {
 return new PerformanceCalculator(aPerformance, aPlay);
 }

With that now a function, I can create subclasses of the performance calculator
and get the creation function to select which one to return.

top level…
 function createPerformanceCalculator(aPerformance, aPlay) {
 switch(aPlay.type) {
 case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
 case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
 default:
 throw new Error(`unknown type: ${aPlay.type}`);
 }
 }

 class TragedyCalculator extends PerformanceCalculator {
 }
 class ComedyCalculator extends PerformanceCalculator {
 }

This sets up the structure for the polymorphism, so I can now move on to
Replace Conditional with Polymorphism (272).

I start with the calculation of the amount for tragedies.

class TragedyCalculator…
 get amount() {
 let result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 return result;
 }

39Reorganizing the Calculations by Type

ptg26261585

Just having this method in the subclass is enough to override the superclass
conditional. But if you’re as paranoid as I am, you might do this:

class PerformanceCalculator…
 get amount() {
 let result = 0;
 switch (this.play.type) {
 case "tragedy":
 throw 'bad thing';
 case "comedy":
 result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 break;
 default:
 throw new Error(`unknown type: ${this.play.type}`);
 }
 return result;
 }

I could have removed the case for tragedy and let the default branch throw an error.
But I like the explicit throw—and it will only be there for a couple more minutes (which
is why I threw a string, not a better error object).

After a compile-test-commit of that, I move the comedy case down too.

class ComedyCalculator…
 get amount() {
 let result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 return result;
 }

I can now remove the superclass amount method, as it should never be called.
But it’s kinder to my future self to leave a tombstone.

class PerformanceCalculator…
 get amount() {
 throw new Error('subclass responsibility');
 }

The next conditional to replace is the volume credits calculation. Looking at
the discussion of future categories of plays, I notice that most plays expect to
check if audience is above 30, with only some categories introducing a variation.
So it makes sense to leave the more common case on the superclass as a default,

Chapter 1 Refactoring: A First Example40

ptg26261585

and let the variations override it as necessary. So I just push down the case for
comedies:

class PerformanceCalculator…
 get volumeCredits() {
 return Math.max(this.performance.audience - 30, 0);
 }

class ComedyCalculator…
 get volumeCredits() {
 return super.volumeCredits + Math.floor(this.performance.audience / 5);
 }

Status: Creating the Data with the Polymorphic
Calculator

Time to reflect on what introducing the polymorphic calculator did to the code.

createStatementData.js
 export default function createStatementData(invoice, plays) {
 const result = {};
 result.customer = invoice.customer;
 result.performances = invoice.performances.map(enrichPerformance);
 result.totalAmount = totalAmount(result);
 result.totalVolumeCredits = totalVolumeCredits(result);
 return result;

function enrichPerformance(aPerformance) {
 const calculator = createPerformanceCalculator(aPerformance, playFor(aPerformance));
 const result = Object.assign({}, aPerformance);
 result.play = calculator.play;
 result.amount = calculator.amount;
 result.volumeCredits = calculator.volumeCredits;
 return result;
 }

function playFor(aPerformance) {
 return plays[aPerformance.playID]
 }

function totalAmount(data) {
 return data.performances
 .reduce((total, p) => total + p.amount, 0);
 }

function totalVolumeCredits(data) {
 return data.performances
 .reduce((total, p) => total + p.volumeCredits, 0);
 }
 }

41Status: Creating the Data with the Polymorphic Calculator

ptg26261585

function createPerformanceCalculator(aPerformance, aPlay) {
 switch(aPlay.type) {
 case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
 case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
 default:
 throw new Error(`unknown type: ${aPlay.type}`);
 }
 }
class PerformanceCalculator {

 constructor(aPerformance, aPlay) {
 this.performance = aPerformance;
 this.play = aPlay;
 }

get amount() {
 throw new Error('subclass responsibility');
 }

get volumeCredits() {
 return Math.max(this.performance.audience - 30, 0);
 }
 }
class TragedyCalculator extends PerformanceCalculator {
get amount() {

 let result = 40000;
 if (this.performance.audience > 30) {
 result += 1000 * (this.performance.audience - 30);
 }
 return result;
 }
 }
class ComedyCalculator extends PerformanceCalculator {

get amount() {
 let result = 30000;
 if (this.performance.audience > 20) {
 result += 10000 + 500 * (this.performance.audience - 20);
 }
 result += 300 * this.performance.audience;
 return result;
 }

get volumeCredits() {
 return super.volumeCredits + Math.floor(this.performance.audience / 5);
 }
 }

Again, the code has increased in size as I’ve introduced structure. The benefit
here is that the calculations for each kind of play are grouped together. If most
of the changes will be to this code, it will be helpful to have it clearly separated
like this. Adding a new kind of play requires writing a new subclass and adding
it to the creation function.

The example gives some insight as to when using subclasses like this is useful.
Here, I’ve moved the conditional lookup from two functions (amountFor and
volumeCreditsFor) to a single constructor function createPerformanceCalculator. The more

Chapter 1 Refactoring: A First Example42

ptg26261585

functions there are that depend on the same type of polymorphism, the
more useful this approach becomes.

An alternative to what I’ve done here would be to have createPerformanceData return
the calculator itself, instead of the calculator populating the intermediate data
structure. One of the nice features of JavaScript’s class system is that with it, using
getters looks like regular data access. My choice on whether to return the instance
or calculate separate output data depends on who is using the downstream data
structure. In this case, I preferred to show how to use the intermediate
data structure to hide the decision to use a polymorphic calculator.

Final Thoughts

This is a simple example, but I hope it will give you a feeling for what refactoring
is like. I’ve used several refactorings, including Extract Function (106), Inline Variable
(123), Move Function (198), and Replace Conditional with Polymorphism (272).

There were three major stages to this refactoring episode: decomposing the
original function into a set of nested functions, using Split Phase (154) to separate
the calculation and printing code, and finally introducing a polymorphic calculator
for the calculation logic. Each of these added structure to the code, enabling me
to better communicate what the code was doing.

As is often the case with refactoring, the early stages were mostly driven by
trying to understand what was going on. A common sequence is: Read the code,
gain some insight, and use refactoring to move that insight from your head back
into the code. The clearer code then makes it easier to understand it, leading to
deeper insights and a beneficial positive feedback loop. There are still some im-
provements I could make, but I feel I’ve done enough to pass my test of leaving
the code significantly better than how I found it.

The true test of good code is
how easy it is to change it.

I’m talking about improving the
code—but programmers love to argue
about what good code looks like. I know
some people object to my preference for
small, well-named functions. If we con-
sider this to be a matter of aesthetics, where nothing is either good or bad but
thinking makes it so, we lack any guide but personal taste. I believe, however,
that we can go beyond taste and say that the true test of good code is how easy
it is to change it. Code should be obvious: When someone needs to make a
change, they should be able to find the code to be changed easily and to make
the change quickly without introducing any errors. A healthy code base maximizes
our productivity, allowing us to build more features for our users both faster and
more cheaply. To keep code healthy, pay attention to what is getting between
the programming team and that ideal, then refactor to get closer to the ideal.

43Final Thoughts

ptg26261585

But the most important thing to learn from this example is the rhythm of
refactoring. Whenever I’ve shown people how I refactor, they are surprised by
how small my steps are, each step leaving the code in a working state that com-
piles and passes its tests. I was just as surprised myself when Kent Beck showed
me how to do this in a hotel room in Detroit two decades ago. The key to effective
refactoring is recognizing that you go faster when you take tiny steps, the code
is never broken, and you can compose those small steps into substantial changes.
Remember that—and the rest is silence.

Chapter 1 Refactoring: A First Example44

ptg26261585

The example in the previous chapter should have given you a decent feel of what
refactoring is. Now you have that, it’s a good time to step back and talk about
some of the broader principles in refactoring.

Defining Refactoring

Like many terms in software development, “refactoring” is often used very
loosely by practitioners. I use the term more precisely, and find it useful to use
it in that more precise form. (These definitions are the same as those I gave in
the first edition of this book.) The term “refactoring” can be used either as a noun
or a verb. The noun’s definition is:

Refactoring (noun): a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its
observable behavior.

This definition corresponds to the named refactorings I’ve mentioned in the
earlier examples, such as Extract Function (106) and Replace Conditional with
Polymorphism (272).

The verb’s definition is:

Refactoring (verb): to restructure software by applying a series of refactorings
without changing its observable behavior.

So I might spend a couple of hours refactoring, during which I would apply a
few dozen individual refactorings.

Over the years, many people in the industry have taken to use “refactoring” to
mean any kind of code cleanup—but the definitions above point to a particular
approach to cleaning up code. Refactoring is all about applying small behavior-
preserving steps and making a big change by stringing together a sequence of
these behavior-preserving steps. Each individual refactoring is either pretty small

45

Chapter 2

Principles in Refactoring

ptg26261585

itself or a combination of small steps. As a result, when I’m refactoring, my code
doesn’t spend much time in a broken state, allowing me to stop at any moment
even if I haven’t finished.

If someone says their code was
broken for a couple of days
while they are refactoring, you
can be pretty sure they were
not refactoring.

I use “restructuring” as a general term
to mean any kind of reorganizing or
cleaning up of a code base, and see
refactoring as a particular kind of restruc-
turing. Refactoring may seem inefficient
to people who first come across it and
watch me making lots of tiny steps, when
a single bigger step would do. But the
tiny steps allow me to go faster because

they compose so well—and, crucially, because I don’t spend any time debugging.
In my definitions, I use the phrase “observable behavior.” This is a deliberately

loose term, indicating that the code should, overall, do just the same things it
did before I started. It doesn’t mean it will work exactly the same—for example,
Extract Function (106) will alter the call stack, so performance characteristics might
change—but nothing should change that the user should care about. In particular,
interfaces to modules often change due to such refactorings as Change Function
Declaration (124) and Move Function (198). Any bugs that I notice during refactoring
should still be present after refactoring (though I can fix latent bugs that nobody
has observed yet).

Refactoring is very similar to performance optimization, as both involve carrying
out code manipulations that don’t change the overall functionality of the program.
The difference is the purpose: Refactoring is always done to make the code
“easier to understand and cheaper to modify.” This might speed things up or slow
things down. With performance optimization, I only care about speeding up the
program, and am prepared to end up with code that is harder to work with if I
really need that improved performance.

The Two Hats

Kent Beck came up with a metaphor of the two hats. When I use refactoring to
develop software, I divide my time between two distinct activities: adding func-
tionality and refactoring. When I add functionality, I shouldn’t be changing existing
code; I’m just adding new capabilities. I measure my progress by adding tests
and getting the tests to work. When I refactor, I make a point of not adding
functionality; I only restructure the code. I don’t add any tests (unless I find a
case I missed earlier); I only change tests when I have to accommodate a change
in an interface.

As I develop software, I find myself swapping hats frequently. I start by trying
to add a new capability, then I realize this would be much easier if the code were

Chapter 2 Principles in Refactoring46

ptg26261585

structured differently. So I swap hats and refactor for a while. Once the code is
better structured, I swap hats back and add the new capability. Once I get the
new capability working, I realize I coded it in a way that’s awkward to understand,
so I swap hats again and refactor. All this might take only ten minutes, but during
this time I’m always aware of which hat I’m wearing and the subtle difference
that makes to how I program.

Why Should We Refactor?

I don’t want to claim refactoring is the cure for all software ills. It is no “silver
bullet.” Yet it is a valuable tool—a pair of silver pliers that helps you keep a good
grip on your code. Refactoring is a tool that can—and should—be used for several
purposes.

Refactoring Improves the Design of Software

Without refactoring, the internal design—the architecture—of software tends to
decay. As people change code to achieve short-term goals, often without a full
comprehension of the architecture, the code loses its structure. It becomes harder
for me to see the design by reading the code. Loss of the structure of code has
a cumulative effect. The harder it is to see the design in the code, the harder it
is for me to preserve it, and the more rapidly it decays. Regular refactoring helps
keep the code in shape.

Poorly designed code usually takes more code to do the same things, often
because the code quite literally does the same thing in several places. Thus an
important aspect of improving design is to eliminate duplicated code. It’s not that
reducing the amount of code will make the system run any faster—the effect on
the footprint of the programs rarely is significant. Reducing the amount of
code does, however, make a big difference in modification of the code. The
more code there is, the harder it is to modify correctly. There’s more code for
me to understand. I change this bit of code here, but the system doesn’t do what
I expect because I didn’t change that bit over there that does much the same
thing in a slightly different context. By eliminating duplication, I ensure that the
code says everything once and only once, which is the essence of good design.

Refactoring Makes Software Easier to Understand

Programming is in many ways a conversation with a computer. I write code that
tells the computer what to do, and it responds by doing exactly what I tell it.
In time, I close the gap between what I want it to do and what I tell it to do.
Programming is all about saying exactly what I want. But there are likely to be
other users of my source code. In a few months, a human will try to read my

47Why Should We Refactor?

ptg26261585

code to make some changes. That user, who we often forget, is actually the most
important. Who cares if the computer takes a few more cycles to compile some-
thing? Yet it does matter if it takes a programmer a week to make a change that
would have taken only an hour with proper understanding of my code.

The trouble is that when I’m trying to get the program to work, I’m not thinking
about that future developer. It takes a change of rhythm to make the code easier
to understand. Refactoring helps me make my code more readable. Before
refactoring, I have code that works but is not ideally structured. A little time
spent on refactoring can make the code better communicate its purpose—say
more clearly what I want.

I’m not necessarily being altruistic about this. Often, this future developer is
myself. This makes refactoring even more important. I’m a very lazy programmer.
One of my forms of laziness is that I never remember things about the code I
write. Indeed, I deliberately try not remember anything I can look up, because
I’m afraid my brain will get full. I make a point of trying to put everything I
should remember into the code so I don’t have to remember it. That way I’m
less worried about Maudite [maudite] killing off my brain cells.

Refactoring Helps Me Find Bugs

Help in understanding the code also means help in spotting bugs. I admit I’m
not terribly good at finding bugs. Some people can read a lump of code and see
bugs; I cannot. However, I find that if I refactor code, I work deeply on under-
standing what the code does, and I put that new understanding right back into
the code. By clarifying the structure of the program, I clarify certain assumptions
I’ve made—to a point where even I can’t avoid spotting the bugs.

It reminds me of a statement Kent Beck often makes about himself: “I’m not a
great programmer; I’m just a good programmer with great habits.” Refactoring
helps me be much more effective at writing robust code.

Refactoring Helps Me Program Faster

In the end, all the earlier points come down to this: Refactoring helps me develop
code more quickly.

This sounds counterintuitive. When I talk about refactoring, people can easily
see that it improves quality. Better internal design, readability, reducing bugs—all
these improve quality. But doesn’t the time I spend on refactoring reduce the
speed of development?

When I talk to software developers who have been working on a system for a
while, I often hear that they were able to make progress rapidly at first, but now
it takes much longer to add new features. Every new feature requires more and
more time to understand how to fit it into the existing code base, and once it’s
added, bugs often crop up that take even longer to fix. The code base starts
looking like a series of patches covering patches, and it takes an exercise in

Chapter 2 Principles in Refactoring48

ptg26261585

archaeology to figure out how things work. This burden slows down adding new
features—to the point that developers wish they could start again from a blank
slate.

I can visualize this state of affairs with the following pseudograph:

But some teams report a different experience. They find they can add new
features faster because they can leverage the existing things by quickly building
on what’s already there.

The difference between these two is the internal quality of the software. Soft-
ware with a good internal design allows me to easily find how and where I need
to make changes to add a new feature. Good modularity allows me to only have to
understand a small subset of the code base to make a change. If the code is clear,
I’m less likely to introduce a bug, and if I do, the debugging effort is much easier.

49Why Should We Refactor?

ptg26261585

Done well, my code base turns into a platform for building new features for its
domain.

I refer to this effect as the Design Stamina Hypothesis [mf-dsh]: By putting our
effort into a good internal design, we increase the stamina of the software effort,
allowing us to go faster for longer. I can’t prove that this is the case, which is
why I refer to it as a hypothesis. But it explains my experience, together with the
experience of hundreds of great programmers that I’ve got to know over my career.

Twenty years ago, the conventional wisdom was that to get this kind of good
design, it had to be completed before starting to program—because once we
wrote the code, we could only face decay. Refactoring changes this picture.
We now know we can improve the design of existing code—so we can form and
improve a design over time, even as the needs of the program change. Since it
is very difficult to do a good design up front, refactoring becomes vital to
achieving that virtuous path of rapid functionality.

When Should We Refactor?

Refactoring is something I do every hour I program. I have noticed a number of
ways it fits into my workflow.

The Rule of Three

Here’s a guideline Don Roberts gave me: The first time you do something,
you just do it. The second time you do something similar, you wince at the
duplication, but you do the duplicate thing anyway. The third time you do
something similar, you refactor.

Or for those who like baseball: Three strikes, then you refactor.

Preparatory Refactoring—Making It Easier to Add a Feature

The best time to refactor is just before I need to add a new feature to the code
base. As I do this, I look at the existing code and, often, see that if it were
structured a little differently, my work would be much easier. Perhaps there’s
function that does almost all that I need, but has some literal values that conflict
with my needs. Without refactoring I might copy the function and change those
values. But that leads to duplicated code—if I need to change it in the future, I’ll
have to change both spots (and, worse, find them). And copy-paste won’t help
me if I need to make a similar variation for a new feature in the future. So with
my refactoring hat on, I use Parameterize Function (310). Once I’ve done that, all
I have to do is call the function with the parameters I need.

Chapter 2 Principles in Refactoring50

ptg26261585

“It’s like I want to go 100 miles east but instead of just traipsing through the
woods, I’m going to drive 20 miles north to the highway and then I’m going to

go 100 miles east at three times the speed I could have if I just went straight
there. When people are pushing you to just go straight there, sometimes you need
to say, ‘Wait, I need to check the map and find the quickest route.’ The prepara-

tory refactoring does that for me.”
— Jessica Kerr,

https://martinfowler.com/articles/preparatory-refactoring-example.html

The same happens when fixing a bug. Once I’ve found the cause of the problem,
I see that it would be much easier to fix should I unify the three bits of copied
code causing the error into one. Or perhaps separating some update logic from
queries will make it easier to avoid the tangling that’s causing the error. By
refactoring to improve the situation, I also increase the chances that the bug will
stay fixed, and reduce the chances that others will appear in the same crevices
of the code.

Comprehension Refactoring: Making Code Easier to Understand

Before I can change some code, I need to understand what it does. This code
may have been written by me or by someone else. Whenever I have to think to
understand what the code is doing, I ask myself if I can refactor the code to make
that understanding more immediately apparent. I may be looking at some condi-
tional logic that’s structured awkwardly. I may have wanted to use some existing
functions but spent several minutes figuring out what they did because they were
named badly.

At that point I have some understanding in my head, but my head isn’t a very
good record of such details. As Ward Cunningham puts it, by refactoring I move
the understanding from my head into the code itself. I then test that understanding
by running the software to see if it still works. If I move my understanding into
the code, it will be preserved longer and be visible to my colleagues.

That doesn’t just help me in the future—it often helps me right now. Early on,
I do comprehension refactoring on little details. I rename a couple variables now
that I understand what they are, or I chop a long function into smaller parts.
Then, as the code gets clearer, I find I can see things about the design that I
could not see before. Had I not changed the code, I probably never would have
seen these things, because I’m just not clever enough to visualize all these changes
in my head. Ralph Johnson describes these early refactorings as wiping the dirt
off a window so you can see beyond. When I’m studying code, refactoring leads
me to higher levels of understanding that I would otherwise miss. Those who
dismiss comprehension refactoring as useless fiddling with the code don’t realize
that by foregoing it they never see the opportunities hidden behind the confusion.

51When Should We Refactor?

https://martinfowler.com/articles/preparatory-refactoring-example.html

ptg26261585

Litter-Pickup Refactoring

A variation of comprehension refactoring is when I understand what the code is
doing, but realize that it’s doing it badly. The logic is unnecessarily convoluted,
or I see functions that are nearly identical and can be replaced by a single param-
eterized function. There’s a bit of a tradeoff here. I don’t want to spend a lot of
time distracted from the task I’m currently doing, but I also don’t want to leave
the trash lying around and getting in the way of future changes. If it’s easy to
change, I’ll do it right away. If it’s a bit more effort to fix, I might make a note
of it and fix it when I’m done with my immediate task.

Sometimes, of course, it’s going to take a few hours to fix, and I have more
urgent things to do. Even then, however, it’s usually worthwhile to make it a little
bit better. As the old camping adage says, always leave the camp site cleaner
than when you found it. If I make it a little better each time I pass through the
code, over time it will get fixed. The nice thing about refactoring is that I don’t
break the code with each small step—so, sometimes, it takes months to complete
the job but the code is never broken even when I’m part way through it.

Planned and Opportunistic Refactoring

The examples above—preparatory, comprehension, litter-pickup refactoring—are
all opportunistic. I don’t set aside time at the beginning to spend on refactor-
ing—instead, I do refactoring as part of adding a feature or fixing a bug. It’s part
of my natural flow of programming. Whether I’m adding a feature or fixing a
bug, refactoring helps me do the immediate task and also sets me up to make
future work easier. This is an important point that’s frequently missed. Refactoring
isn’t an activity that’s separated from programming—any more than you set aside
time to write if statements. I don’t put time on my plans to do refactoring; most
refactoring happens while I’m doing other things.

You have to refactor when you
run into ugly code—but excel-
lent code needs plenty of refac-
toring too.

It’s also a common error to see refac-
toring as something people do to fix past
mistakes or clean up ugly code. Certainly
you have to refactor when you run into
ugly code, but excellent code needs
plenty of refactoring too. Whenever I
write code, I’m making tradeoffs—how
much do I need to parameterize, where

to draw the lines between functions? The tradeoffs I made correctly for yesterday’s
feature set may no longer be the right ones for the new features I’m adding today.
The advantage is that clean code is easier to refactor when I need to change
those tradeoffs to reflect the new reality.

Chapter 2 Principles in Refactoring52

ptg26261585

“for each desired change, make the change easy (warning: this may be hard),
then make the easy change”

— Kent Beck,
https://twitter.com/kentbeck/status/250733358307500032

For a long time, people thought of writing software as a process of accretion:
To add new features, we should be mostly adding new code. But good developers
know that, often, the fastest way to add a new feature is to change the code to
make it easy to add. Software should thus be never thought of as “done.” As new
capabilities are needed, the software changes to reflect that. Those changes can
often be greater in the existing code than in the new code.

All this doesn’t mean that planned refactoring is always wrong. If a team has
neglected refactoring, it often needs dedicated time to get their code base into a
better state for new features, and a week spent refactoring now can repay itself
over the next couple of months. Sometimes, even with regular refactoring I’ll see
a problem area grow to the point when it needs some concerted effort to fix. But
such planned refactoring episodes should be rare. Most refactoring effort should
be the unremarkable, opportunistic kind.

One bit of advice I’ve heard is to separate refactoring work and new feature
additions into different version-control commits. The big advantage of this is that
they can be reviewed and approved independently. I’m not convinced of this,
however. Too often, the refactorings are closely interwoven with adding new
features, and it’s not worth the time to separate them out. This can also remove
the context for the refactoring, making the refactoring commits hard to justify.
Each team should experiment to find what works for them; just remember that
separating refactoring commits is not a self-evident principle—it’s only worthwhile
if it makes life easier.

Long-Term Refactoring

Most refactoring can be completed within a few minutes—hours at most. But
there are some larger refactoring efforts that can take a team weeks to complete.
Perhaps they need to replace an existing library with a new one. Or pull some
section of code out into a component that they can share with another team. Or
fix some nasty mess of dependencies that they had allowed to build up.

Even in such cases, I’m reluctant to have a team do dedicated refactoring. Often,
a useful strategy is to agree to gradually work on the problem over the course
of the next few weeks. Whenever anyone goes near any code that’s in the refac-
toring zone, they move it a little way in the direction they want to improve. This
takes advantage of the fact that refactoring doesn’t break the code—each small
change leaves everything in a still-working state. To change from one library to
another, start by introducing a new abstraction that can act as an interface
to either library. Once the calling code uses this abstraction, it’s much easier

53When Should We Refactor?

https://twitter.com/kentbeck/status/250733358307500032

ptg26261585

to switch one library for another. (This tactic is called Branch By Abstraction
[mf-bba].)

Refactoring in a Code Review

Some organizations do regular code reviews; those that don’t would do better if
they did. Code reviews help spread knowledge through a development team.
Reviews help more experienced developers pass knowledge to those less experi-
enced. They help more people understand more aspects of a large software system.
They are also very important in writing clear code. My code may look clear to
me but not to my team. That’s inevitable—it’s hard for people to put themselves
in the shoes of someone unfamiliar with whatever they are working on. Reviews
also give the opportunity for more people to suggest useful ideas. I can only think
of so many good ideas in a week. Having other people contribute makes my life
easier, so I always look for reviews.

I’ve found that refactoring helps me review someone else’s code. Before I
started using refactoring, I could read the code, understand it to some degree,
and make suggestions. Now, when I come up with ideas, I consider whether they
can be easily implemented then and there with refactoring. If so, I refactor. When
I do it a few times, I can see more clearly what the code looks like with the
suggestions in place. I don’t have to imagine what it would be like—I can see it.
As a result, I can come up with a second level of ideas that I would never have
realized had I not refactored.

Refactoring also helps get more concrete results from the code review. Not
only are there suggestions; many suggestions are implemented there and then.
You end up with much more of a sense of accomplishment from the exercise.

How I’d embed refactoring into a code review depends on the nature of the
review. The common pull request model, where a reviewer looks at code without
the original author, doesn’t work too well. It’s better to have the original author
of the code present because the author can provide context on the code and
fully appreciate the reviewers’ intentions for their changes. I’ve had my best
experiences with this by sitting one-on-one with the original author, going
through the code and refactoring as we go. The logical conclusion of this style
is pair programming: continuous code review embedded within the process of
programming.

What Do I Tell My Manager?

One of the most common questions I’ve been asked is, “How to tell a manager
about refactoring?” I’ve certainly seen places were refactoring has become a dirty
word—with managers (and customers) believing that refactoring is either correcting
errors made earlier, or work that doesn’t yield valuable features. This is exacer-
bated by teams scheduling weeks of pure refactoring—especially if what they are

Chapter 2 Principles in Refactoring54

ptg26261585

really doing is not refactoring but less careful restructuring that causes breakages
in the code base.

To a manager who is genuinely savvy about technology and understands the
design stamina hypothesis, refactoring isn’t hard to justify. Such managers should
be encouraging refactoring on a regular basis and be looking for signs that indicate
a team isn’t doing enough. While it does happen that teams do too much
refactoring, it’s much rarer than teams not doing enough.

Of course, many managers and customer don’t have the technical awareness
to know how code base health impacts productivity. In these cases I give my
more controversial advice: Don’t tell!

Subversive? I don’t think so. Software developers are professionals. Our job is
to build effective software as rapidly as we can. My experience is that refactoring
is a big aid to building software quickly. If I need to add a new function and the
design does not suit the change, I find it’s quicker to refactor first and then add
the function. If I need to fix a bug, I need to understand how the software
works—and I find refactoring is the fastest way to do this. A schedule-driven
manager wants me to do things the fastest way I can; how I do it is my respon-
sibility. I’m being paid for my expertise in programming new capabilities fast,
and the fastest way is by refactoring—therefore I refactor.

When Should I Not Refactor?

It may sound like I always recommend refactoring—but there are cases when it’s
not worthwhile.

If I run across code that is a mess, but I don’t need to modify it, then I don’t
need to refactor it. Some ugly code that I can treat as an API may remain ugly.
It’s only when I need to understand how it works that refactoring gives me any
benefit.

Another case is when it’s easier to rewrite it than to refactor it. This is a tricky
decision. Often, I can’t tell how easy it is to refactor some code unless I spend
some time trying and thus get a sense of how difficult it is. The decision to
refactor or rewrite requires good judgment and experience, and I can’t really boil
it down into a piece of simple advice.

Problems with Refactoring

Whenever anyone advocates for some technique, tool, or architecture, I always
look for problems. Few things in life are all sunshine and clear skies. You need
to understand the tradeoffs to decide when and where to apply something. I do
think refactoring is a valuable technique—one that should be used more by most
teams. But there are problems associated with it, and it’s important to understand
how they manifest themselves and how we can react to them.

55Problems with Refactoring

ptg26261585

Slowing Down New Features

If you read the previous section, you should already know my response. Although
many people see time spent refactoring as slowing down the development of
new features, the whole purpose of refactoring is to speed things up. But while
this is true, it’s also true that the perception of refactoring as slowing things
down is still common—and perhaps the biggest barrier to people doing enough
refactoring.

The whole purpose of refactor-
ing is to make us program
faster, producing more value
with less effort.

There is a genuine tradeoff here. I do
run into situations where I see a (large-
scale) refactoring that really needs to be
done, but the new feature I want to add
is so small that I prefer to add it and
leave the larger refactoring alone. That’s
a judgment call—part of my professional
skills as a programmer. I can’t easily

describe, let alone quantify, how I make that tradeoff.
I’m very conscious that preparatory refactoring often makes a change easier,

so I certainly will do it if I see that it makes my new feature easier to implement.
I’m also more inclined to refactor if this is a problem I’ve seen before—sometimes
it takes me a couple of times seeing some particular ugliness before I decide to
refactor it away. Conversely, I’m more likely to not refactor if it’s part of the code
I rarely touch and the cost of the inconvenience isn’t something I feel very often.
Sometimes, I delay a refactoring because I’m not sure what improvement to do,
although at other times I’ll try something as an experiment to see if it makes
things better.

Still, the evidence I hear from my colleagues in the industry is that too little
refactoring is far more prevalent than too much. In other words, most people
should try to refactor more often. You may have trouble telling the difference in
productivity between a healthy and a sickly code base because you haven’t had
enough experience of a healthy code base—of the power that comes from easily
combining existing parts into new configurations to quickly enable complicated
new features.

Although it’s often managers that are criticized for the counter-productive habit
of squelching refactoring in the name of speed, I’ve often seen developers do it
to themselves. Sometimes, they think they shouldn’t be refactoring even though
their leadership is actually in favor. If you’re a tech lead in a team, it’s important
to show team members that you value improving the health of a code base. That
judgment I mentioned earlier on whether to refactor or not is something that takes
years of experience to build up. Those with less experience in refactoring need
lots of mentoring to accelerate them through the process.

But I think the most dangerous way that people get trapped is when they try
to justify refactoring in terms of “clean code,” “good engineering practice,” or
similar moral reasons. The point of refactoring isn’t to show how sparkly a code

Chapter 2 Principles in Refactoring56

ptg26261585

base is—it is purely economic. We refactor because it makes us faster—faster to
add features, faster to fix bugs. It’s important to keep that in front of your mind
and in front of communication with others. The economic benefits of refactoring
should always be the driving factor, and the more that is understood by
developers, managers, and customers, the more of the “good design” curve
we’ll see.

Code Ownership

Many refactorings involve making changes that affect not just the internals of
a module but its relationships with other parts of a system. If I want to rename a
function, and I can find all the callers to a function, I simply apply Change Function
Declaration (124) and change the declaration and the callers in one change. But
sometimes this simple refactoring isn’t possible. Perhaps the calling code is owned
by a different team and I don’t have write access to their repository. Perhaps the
function is a declared API used by my customers—so I can’t even tell if it’s being
used, let alone by who and how much. Such functions are part of a published
interface—an interface that is used by clients independent of those who declare
the interface.

Code ownership boundaries get in the way of refactoring because I cannot
make the kinds of changes I want without breaking my clients. This doesn’t pre-
vent refactoring—I can still do a great deal—but it does impose limitations. When
renaming a function, I need to use Rename Function (124) and to retain the old
declaration as a pass-through to the new one. This complicates the interface—but
it is the price I must pay to avoid breaking my clients. I may be able to mark the
old interface as deprecated and, in time, retire it, but sometimes I have to retain
that interface forever.

Due to these complexities, I recommend against fine-grained strong code
ownership. Some organizations like any piece of code to have a single programmer
as an owner, and only allow that programmer to change it. I’ve seen a team of
three people operate in such a way that each one published interfaces to the
other two. This led to all sorts of gyrations to maintain interfaces when it would
have been much easier to go into the code base and make the edits. My preference
is to allow team ownership of code—so that anyone in the same team can modify
the team’s code, even if originally written by someone else. Programmers may
have individual responsibility for areas of a system, but that should imply that
they monitor changes to their area of responsibility, not block them by default.

Such a more permissive ownership scheme can even exist across teams. Some
teams encourage an open-source-like model where people from other teams can
change a branch of their code and send the commit in to be approved. This allows
one team to change the clients of their functions—they can delete the old decla-
rations once their commits to their clients have been accepted. This can often
be a good compromise between strong code ownership and chaotic changes in
large systems.

57Problems with Refactoring

ptg26261585

Branches

As I write this, a common approach in teams is for each team member to work
on a branch of the code base using a version control system, and do considerable
work on that branch before integrating with a mainline (often called master or
trunk) shared across the team. Often, this involves building a whole feature on
a branch, not integrating into the mainline until the feature is ready to be released
into production. Fans of this approach claim that it keeps the mainline clear of
any in-process code, provides a clear version history of feature additions, and
allows features to be reverted easily should they cause problems.

There are downsides to feature branches like this. The longer I work on an
isolated branch, the harder the job of integrating my work with mainline is going
to be when I’m done. Most people reduce this pain by frequently merging or re-
basing from mainline to my branch. But this doesn’t really solve the problem
when several people are working on individual feature branches. I distinguish
between merging and integration. If I merge mainline into my code, this is a one-
way movement—my branch changes but the mainline doesn’t. I use “integrate”
to mean a two-way process that pulls changes from mainline into my branch and
then pushes the result back into mainline, changing both. If Rachel is working
on her branch I don’t see her changes until she integrates with mainline; at that
point, I have to merge her changes into my feature branch, which may mean
considerable work. The hard part of this work is dealing with semantic changes.
Modern version control systems can do wonders with merging complex changes to
the program text, but they are blind to the semantics of the code. If I’ve
changed the name of a function, my version control tool may easily integrate my
changes with Rachel’s. But if, in her branch, she added a call to a function that
I’ve renamed in mine, the code will fail.

The problem of complicated merges gets exponentially worse as the length of
feature branches increases. Integrating branches that are four weeks old is more
than twice as hard as those that are a couple of weeks old. Many people, therefore,
argue for keeping feature branches short—perhaps just a couple of days. Others,
such as me, want them even shorter than that. This is an approach called Con-
tinuous Integration (CI), also known as Trunk-Based Development. With CI, each
team member integrates with mainline at least once per day. This prevents any
branches diverting too far from each other and thus greatly reduces the complex-
ity of merges. CI doesn’t come for free: It means you use practices to ensure the
mainline is healthy, learn to break large features into smaller chunks, and use
feature toggles (aka feature flags) to switch off any in-process features that can’t
be broken down.

Fans of CI like it partly because it reduces the complexity of merges, but the
dominant reason to favor CI is that it’s far more compatible with refactoring.
Refactorings often involve making lots of little changes all over the code
base—which are particularly prone to semantic merge conflicts (such as renaming
a widely used function). Many of us have seen feature-branching teams that find

Chapter 2 Principles in Refactoring58

ptg26261585

refactorings so exacerbate merge problems that they stop refactoring. CI and re-
factoring work well together, which is why Kent Beck combined them in Extreme
Programming.

I’m not saying that you should never use feature branches. If they are sufficiently
short, their problems are much reduced. (Indeed, users of CI usually also use
branches, but integrate them with mainline each day.) Feature branches may be
the right technique for open source projects where you have infrequent commits
from programmers who you don’t know well (and thus don’t trust). But in a full-
time development team, the cost that feature branches impose on refactoring is
excessive. Even if you don’t go to full CI, I certainly urge you to integrate
as frequently as possible. You should also consider the objective evidence
[Forsgren et al.] that teams that use CI are more effective in software delivery.

Testing

One of the key characteristics of refactoring is that it doesn’t change the observable
behavior of the program. If I follow the refactorings carefully, I shouldn’t break
anything—but what if I make a mistake? (Or, knowing me, s/if/when.) Mistakes
happen, but they aren’t a problem provided I catch them quickly. Since each
refactoring is a small change, if I break anything, I only have a small change to
look at to find the fault—and if I still can’t spot it, I can revert my version control
to the last working version.

The key here is being able to catch an error quickly. To do this, realistically, I
need to be able to run a comprehensive test suite on the code—and run it
quickly, so that I’m not deterred from running it frequently. This means that in
most cases, if I want to refactor, I need to have self-testing code [mf-stc].

To some readers, self-testing code sounds like a requirement so steep as to be
unrealizable. But over the last couple of decades, I’ve seen many teams build
software this way. It takes attention and dedication to testing, but the benefits
make it really worthwhile. Self-testing code not only enables refactoring—it
also makes it much safer to add new features, since I can quickly find and kill
any bugs I introduce. The key point here is that when a test fails, I can look at the
change I’ve made between when the tests were last running correctly and
the current code. With frequent test runs, that will be only a few lines of code.
By knowing it was those few lines that caused the failure, I can much more easily
find the bug.

This also answers those who are concerned that refactoring carries too much
risk of introducing bugs. Without self-testing code, that’s a reasonable
worry—which is why I put so much emphasis on having solid tests.

There is another way to deal with the testing problem. If I use an environment
that has good automated refactorings, I can trust those refactorings even without
running tests. I can then refactor, providing I only use those refactorings that are
safely automated. This removes a lot of nice refactorings from my menu, but still

59Problems with Refactoring

ptg26261585

leaves me enough to deliver some useful benefits. I’d still rather have self-testing
code, but it’s an option that is useful to have in the toolkit.

This also inspires a style of refactoring that only uses a limited set of refactorings
that can be proven safe. Such refactorings require carefully following the steps,
and are language-specific. But teams using them have found they can do useful
refactoring on large code bases with poor test coverage. I don’t focus on that in
this book, as it’s a newer, less described and understood technique that involves
detailed, language-specific activity. (It is, however, something I hope talk about
more on my web site in the future. For a taste of it, see Jay Bazuzi’s description
[Bazuzi] of a safer way to do Extract Method (106) in C++.)

Self-testing code is, unsurprisingly, closely associated with Continuous
Integration—it is the mechanism that we use to catch semantic integration conflicts.
Such testing practices are another component of Extreme Programming and a
key part of Continuous Delivery.

Legacy Code

Most people would regard a big legacy as a Good Thing—but that’s one of the
cases where programmers’ view is different. Legacy code is often complex, fre-
quently comes with poor tests, and, above all, is written by Someone Else
(shudder).

Refactoring can be a fantastic tool to help understand a legacy system. Functions
with misleading names can be renamed so they make sense, awkward program-
ming constructs smoothed out, and the program turned from a rough rock to a
polished gem. But the dragon guarding this happy tale is the common lack of
tests. If you have a big legacy system with no tests, you can’t safely refactor it
into clarity.

The obvious answer to this problem is that you add tests. But while this sounds
a simple, if laborious, procedure, it’s often much more tricky in practice. Usually, a
system is only easy to put under test if it was designed with testing in mind—in
which case it would have the tests and I wouldn’t be worrying about it.

There’s no simple route to dealing with this. The best advice I can give is to
get a copy of Working Effectively with Legacy Code [Feathers] and follow its guidance.
Don’t be worried by the age of the book—its advice is just as true more than a
decade later. To summarize crudely, it advises you to get the system under test
by finding seams in the program where you can insert tests. Creating these seams
involves refactoring—which is much more dangerous since it’s done without tests,
but is a necessary risk to make progress. This is a situation where safe, automated
refactorings can be a godsend. If all this sounds difficult, that’s because it is.
Sadly, there’s no shortcut to getting out of a hole this deep—which is why I’m
such a strong proponent of writing self-testing code from the start.

Chapter 2 Principles in Refactoring60

ptg26261585

Even when I do have tests, I don’t advocate trying to refactor a complicated
legacy mess into beautiful code all at once. What I prefer to do is tackle it in
relevant pieces. Each time I pass through a section of the code, I try to make it
a little bit better—again, like leaving a camp site cleaner than when I found it. If
this is a large system, I’ll do more refactoring in areas I visit frequently—which
is the right thing to do because, if I need to visit code frequently, I’ll get a bigger
payoff by making it easier to understand.

Databases

When I wrote the first edition of this book, I said that refactoring databases was
a problem area. But, within a year of the book’s publication, that was no longer
the case. My colleague Pramod Sadalage developed an approach to evolutionary
database design [mf-evodb] and database refactoring [Ambler & Sadalage] that
is now widely used. The essence of the technique is to combine the structural
changes to a database’s schema and access code with data migration scripts that
can easily compose to handle large changes.

Consider a simple example of renaming a field (column). As in Change Function
Declaration (124), I need to find the original declaration of the structure and all
the callers of this structure and change them in a single change. The complication,
however, is that I also have to transform any data that uses the old field to use
the new one. I write a small hunk of code that carries out this transform and
store it in version control, together with the code that changes any declared
structure and access routines. Then, whenever I need to migrate between two
versions of the database, I run all the migration scripts that exist between my
current copy of the database and my desired version.

As with regular refactoring, the key here is that each individual change is small
yet captures a complete change, so the system still runs after applying the migra-
tion. Keeping them small means they are easy to write, but I can string many of
them into a sequence that can make a significant change to the database’s
structure and the data stored in it.

One difference from regular refactorings is that database changes often are
best separated over multiple releases to production. This makes it easy to reverse
any change that causes a problem in production. So, when renaming a field, my
first commit would add the new database field but not use it. I may then set up
the updates so they update both old and new fields at once. I can then gradually
move the readers over to the new field. Only once they have all moved to the
new field, and I’ve given a little time for any bugs to show themselves, would
I remove the now-unused old field. This approach to database changes is an
example of a general approach of parallel change [mf-pc] (also called expand-
contract).

61Problems with Refactoring

ptg26261585

Refactoring, Architecture, and Yagni

Refactoring has profoundly changed how people think about software architecture.
Early in my career, I was taught that software design and architecture was
something to be worked on, and mostly completed, before anyone started writing
code. Once the code was written, its architecture was fixed and could only decay
due to carelessness.

Refactoring changes this perspective. It allows me to significantly alter the ar-
chitecture of software that’s been running in production for years. Refactoring
can improve the design of existing code, as this book’s subtitle implies. But as I
indicated earlier, changing legacy code is often challenging, especially when it
lacks decent tests.

The real impact of refactoring on architecture is in how it can be used to form
a well-designed code base that can respond gracefully to changing needs. The
biggest issue with finishing architecture before coding is that such an approach
assumes the requirements for the software can be understood early on. But expe-
rience shows that this is often, even usually, an unachievable goal. Repeatedly,
I saw people only understand what they really needed from software once they’d
had a chance to use it, and saw the impact it made to their work.

One way of dealing with future changes is to put flexibility mechanisms into
the software. As I write some function, I can see that it has a general applicability.
To handle the different circumstances that I anticipate it to be used in, I can see
a dozen parameters I could add to that function. These parameters are flexibility
mechanisms—and, like most mechanisms, they are not a free lunch. Adding all
those parameters complicates the function for the one case it’s used right now.
If I miss a parameter, all the parameterization I have added makes it harder for
me to add more. I find I often get my flexibility mechanisms wrong—either because
the changing needs didn’t work out the way I expected or my mechanism design
was faulty. Once I take all that into account, most of the time my flexibility
mechanisms actually slow down my ability to react to change.

With refactoring, I can use a different strategy. Instead of speculating on what
flexibility I will need in the future and what mechanisms will best enable that, I
build software that solves only the currently understood needs, but I make this
software excellently designed for those needs. As my understanding of the users’
needs changes, I use refactoring to adapt the architecture to those new demands.
I can happily include mechanisms that don’t increase complexity (such as small,
well-named functions) but any flexibility that complicates the software has to
prove itself before I include it. If I don’t have different values for a parameter
from the callers, I don’t add it to the parameter list. Should the time come that
I need to add it, then Parameterize Function (310) is an easy refactoring to apply. I
often find it useful to estimate how hard it would be to use refactoring later to
support an anticipated change. Only if I can see that it would be substantially
harder to refactor later do I consider adding a flexibility mechanism now.

Chapter 2 Principles in Refactoring62

ptg26261585

This approach to design goes under various names: simple design, incremental
design, or yagni [mf-yagni] (originally an acronym for “you aren’t going to need
it”). Yagni doesn’t imply that architectural thinking disappears, although it is
sometimes naively applied that way. I think of yagni as a different style of incor-
porating architecture and design into the development process—a style that isn’t
credible without the foundation of refactoring.

Adopting yagni doesn’t mean I neglect all upfront architectural thinking. There
are still cases where refactoring changes are difficult and some preparatory
thinking can save time. But the balance has shifted a long way—I’m much more
inclined to deal with issues later when I understand them better. All this has led
to a growing discipline of evolutionary architecture [Ford et al.] where architects
explore the patterns and practices that take advantage of our ability to iterate
over architectural decisions.

Refactoring and the Wider Software Development Process

If you’ve read the earlier section on problems, one lesson you’ve probably drawn
is that the effectiveness of refactoring is tied to other software practices that a
team uses. Indeed, refactoring’s early adoption was as part of Extreme Program-
ming [mf-xp] (XP), a process which was notable for putting together a set of
relatively unusual and interdependent practices—such as continuous integra-
tion, self-testing code, and refactoring (the latter two woven into test-driven
development).

Extreme Programming was one of the first agile software methods [mf-nm]
and, for several years, led the rise of agile techniques. Enough projects now use
agile methods that agile thinking is generally regarded as mainstream—but in
reality most “agile” projects only use the name. To really operate in an agile way,
a team has to be capable and enthusiastic refactorers—and for that, many aspects
of their process have to align with making refactoring a regular part of their work.

The first foundation for refactoring is self-testing code. By this, I mean that
there is a suite of automated tests that I can run and be confident that, if I made
an error in my programming, some test will fail. This is such an important
foundation for refactoring that I’ll spend a chapter talking more about this.

To refactor on a team, it’s important that each member can refactor when they
need to without interfering with others’ work. This is why I encourage Continuous
Integration. With CI, each member’s refactoring efforts are quickly shared with
their colleagues. No one ends up building new work on interfaces that are being
removed, and if the refactoring is going to cause a problem with someone else’s
work, we know about this quickly. Self-testing code is also a key element of
Continuous Integration, so there is a strong synergy between the three practices
of self-testing code, continuous integration, and refactoring.

63Refactoring and the Wider Software Development Process

ptg26261585

With this trio of practices in place, we enable the Yagni design approach that
I talked about in the previous section. Refactoring and yagni positively reinforce
each other: Not just is refactoring (and its prerequisites) a foundation for
yagni—yagni makes it easier to do refactoring. This is because it’s easier to change
a simple system than one that has lots of speculative flexibility included. Balance
these practices, and you can get into a virtuous circle with a code base that
responds rapidly to changing needs and is reliable.

With these core practices in place, we have the foundation to take advantage
of the other elements of the agile mindset. Continuous Delivery keeps our software
in an always-releasable state. This is what allows many web organizations to re-
lease updates many times a day—but even if we don’t need that, it reduces risk
and allows us to schedule our releases to satisfy business needs rather than
technological constraints. With a firm technical foundation, we can drastically
reduce the time it takes to get a good idea into production code, allowing us to
better serve our customers. Furthermore, these practices increase the reliability
of our software, with less bugs to spend time fixing.

Stated like this, it all sounds rather simple—but in practice it isn’t. Software
development, whatever the approach, is a tricky business, with complex interac-
tions between people and machines. The approach I describe here is a proven
way to handle this complexity, but like any approach, it requires practice and
skill.

Refactoring and Performance

A common concern with refactoring is the effect it has on the performance of a
program. To make the software easier to understand, I often make changes that
will cause the program to run slower. This is an important issue. I don’t belong
to the school of thought that ignores performance in favor of design purity or in
hopes of faster hardware. Software has been rejected for being too slow, and
faster machines merely move the goalposts. Refactoring can certainly make soft-
ware go more slowly—but it also makes the software more amenable to perfor-
mance tuning. The secret to fast software, in all but hard real-time contexts, is
to write tunable software first and then tune it for sufficient speed.

I’ve seen three general approaches to writing fast software. The most serious
of these is time budgeting, often used in hard real-time systems. As you decom-
pose the design, you give each component a budget for resources—time and
footprint. That component must not exceed its budget, although a mechanism
for exchanging budgeted resources is allowed. Time budgeting focuses attention
on hard performance times. It is essential for systems, such as heart pacemakers,
in which late data is always bad data. This technique is inappropriate for other
kinds of systems, such as the corporate information systems with which I
usually work.

Chapter 2 Principles in Refactoring64

ptg26261585

The second approach is the constant attention approach. Here, every program-
mer, all the time, does whatever she can to keep performance high. This is a
common approach that is intuitively attractive—but it does not work very well.
Changes that improve performance usually make the program harder to work
with. This slows development. This would be a cost worth paying if the resulting
software were quicker—but usually it is not. The performance improvements are
spread all around the program; each improvement is made with a narrow
perspective of the program’s behavior, and often with a misunderstanding of how
a compiler, runtime, and hardware behaves.

It Takes Awhile to Create Nothing

The Chrysler Comprehensive Compensation pay process was running too
slowly. Although we were still in development, it began to bother us, because
it was slowing down the tests.

Kent Beck, Martin Fowler, and I decided we’d fix it up. While I waited for
us to get together, I was speculating, on the basis of my extensive knowledge
of the system, about what was probably slowing it down. I thought of several
possibilities and chatted with folks about the changes that were probably
necessary. We came up with some really good ideas about what would make
the system go faster.

Then we measured performance using Kent’s profiler. None of the possi-
bilities I had thought of had anything to do with the problem. Instead, we
found that the system was spending half its time creating instances of date.
Even more interesting was that all the instances had the same couple of
values.

When we looked at the date-creation logic, we saw some opportunities
for optimizing how these dates were created. They were all going through
a string conversion even though no external inputs were involved. The code
was just using string conversion for convenience of typing. Maybe we could
optimize that.

Then we looked at how these dates were being used. It turned out that
the huge bulk of them were all creating instances of date range, an object
with a from date and a to date. Looking around little more, we realized that
most of these date ranges were empty!

As we worked with date range, we used the convention that any date
range that ended before it started was empty. It’s a good convention and fits
in well with how the class works. Soon after we started using this convention,
we realized that just creating a date range that starts after it ends wasn’t
clear code, so we extracted that behavior into a factory method for empty
date ranges.

We had made that change to make the code clearer, but we received an
unexpected payoff. We created a constant empty date range and adjusted

65Refactoring and Performance

ptg26261585

the factory method to return that object instead of creating it every time.
That change doubled the speed of the system, enough for the tests to be
bearable. It took us about five minutes.

I had speculated with various members of the team (Kent and Martin deny
participating in the speculation) on what was likely wrong with code we
knew very well. We had even sketched some designs for improvements
without first measuring what was going on.

We were completely wrong. Aside from having a really interesting
conversation, we were doing no good at all.

The lesson is: Even if you know exactly what is going on in your system,
measure performance, don’t speculate. You’ll learn something, and nine times
out of ten, it won’t be that you were right!

— Ron Jeffries

The interesting thing about performance is that in most programs, most of their
time is spent in a small fraction of the code. If I optimize all the code equally,
I’ll end up with 90 percent of my work wasted because it’s optimizing code that
isn’t run much. The time spent making the program fast—the time lost because
of lack of clarity—is all wasted time.

The third approach to performance improvement takes advantage of this
90-percent statistic. In this approach, I build my program in a well-factored
manner without paying attention to performance until I begin a deliberate perfor-
mance optimization exercise. During this performance optimization, I follow a
specific process to tune the program.

I begin by running the program under a profiler that monitors the program
and tells me where it is consuming time and space. This way I can find that small
part of the program where the performance hot spots lie. I then focus on those
performance hot spots using the same optimizations I would use in the constant-
attention approach. But since I’m focusing my attention on a hot spot, I’m getting
much more effect with less work. Even so, I remain cautious. As in refactoring,
I make the changes in small steps. After each step I compile, test, and rerun
the profiler. If I haven’t improved performance, I back out the change. I
continue the process of finding and removing hot spots until I get the performance
that satisfies my users.

Having a well-factored program helps with this style of optimization in two
ways. First, it gives me time to spend on performance tuning. With well-factored
code, I can add functionality more quickly. This gives me more time to focus on
performance. (Profiling ensures I spend that time on the right place.) Second,
with a well-factored program I have finer granularity for my performance analysis.
My profiler leads me to smaller parts of the code, which are easier to tune. With
clearer code, I have a better understanding of my options and of what kind of
tuning will work.

Chapter 2 Principles in Refactoring66

ptg26261585

I’ve found that refactoring helps me write fast software. It slows the software
in the short term while I’m refactoring, but makes it easier to tune during
optimization. I end up well ahead.

Where Did Refactoring Come From?

I’ve not succeeded in pinning down the birth of the term “refactoring.” Good
programmers have always spent at least some time cleaning up their code. They
do this because they have learned that clean code is easier to change than complex
and messy code, and good programmers know that they rarely write clean code
the first time around.

Refactoring goes beyond this. In this book, I’m advocating refactoring as a key
element in the whole process of software development. Two of the first people
to recognize the importance of refactoring were Ward Cunningham and Kent
Beck, who worked with Smalltalk from the 1980s onward. Smalltalk is an envi-
ronment that even then was particularly hospitable to refactoring. It is a very
dynamic environment that allows you to quickly write highly functional software.
Smalltalk had a very short compile-link-execute cycle for its time, which made it
easy to change things quickly at a time where overnight compile cycles were not
unknown. It is also object-oriented and thus provides powerful tools for minimiz-
ing the impact of change behind well-defined interfaces. Ward and Kent explored
software development approaches geared to this kind of environment, and their
work developed into Extreme Programming. They realized that refactoring was
important in improving their productivity and, ever since, have been working
with refactoring, applying it to serious software projects and refining it.

Ward and Kent’s ideas were a strong influence on the Smalltalk community,
and the notion of refactoring became an important element in the Smalltalk cul-
ture. Another leading figure in the Smalltalk community is Ralph Johnson, a
professor at the University of Illinois at Urbana-Champaign, who is famous as
one of the authors of the “Gang of Four” [gof] book on design patterns. One of
Ralph’s biggest interests is in developing software frameworks. He explored how
refactoring can help develop an efficient and flexible framework.

Bill Opdyke was one of Ralph’s doctoral students and was particularly interested
in frameworks. He saw the potential value of refactoring and saw that it could
be applied to much more than Smalltalk. His background was in telephone switch
development, in which a great deal of complexity accrues over time and changes
are difficult to make. Bill’s doctoral research looked at refactoring from a tool
builder’s perspective. Bill was interested in refactorings that would be useful for
C++ framework development; he researched the necessary semantics-preserving
refactorings and showed how to prove they were semantics-preserving and how
a tool could implement these ideas. Bill’s doctoral thesis [Opdyke] was the first
substantial work on refactoring.

67Where Did Refactoring Come From?

ptg26261585

I remember meeting Bill at the OOPSLA conference in 1992. We sat in a café
and he told me about his research. I remember thinking, “Interesting, but not
really that important.” Boy, was I wrong!

John Brant and Don Roberts took the refactoring tool ideas much further to
produce the Refactoring Browser, the first refactoring tool, appropriately for the
Smalltalk environment.

And me? I’d always been inclined to clean code, but I’d never considered it to
be that important. Then, I worked on a project with Kent and saw the way he
used refactoring. I saw the difference it made in productivity and quality. That
experience convinced me that refactoring was a very important technique. I was
frustrated, however, because there was no book that I could give to a working
programmer, and none of the experts above had any plans to write such a book.
So, with their help, I did—which led to the first edition of this book.

Fortunately, the concept of refactoring caught on in the industry. The book
sold well, and refactoring entered the vocabulary of most programmers. More
tools appeared, especially for Java. One downside of this popularity has been
people using “refactoring” loosely, to mean any kind of restructuring. Despite
this, however, it has become a mainstream practice.

Automated Refactorings

Perhaps the biggest change to refactoring in the last decade or so is the availabil-
ity of tools that support automated refactoring. If I want to rename a method in
Java and I’m using IntelliJ IDEA [intellij] or Eclipse [eclipse] (to mention just
two), I can do it by picking an item off the menu. The tool completes the refac-
toring for me—and I’m usually sufficiently confident in its work that I don’t
bother running the test suite.

The first tool that did this was the Smalltalk Refactoring Browser, written by
John Brandt and Don Roberts. The idea took off in the Java community very
rapidly at the beginning of the century. When JetBrains launched their IntelliJ
IDEA IDE, automated refactoring was one of the compelling features. IBM followed
suit shortly afterwards with refactoring tools in Visual Age for Java. Visual Age
didn’t have a big impact, but much of its capabilities were reimplemented in
Eclipse, including the refactoring support.

Refactoring also came to C#, initially via JetBrains’s Resharper, a plug-in for
Visual Studio. Later on, the Visual Studio team added some refactoring capabilities.

It’s now pretty common to find some kind of refactoring support in editors and
tools, although the actual capabilities vary a fair bit. Some of this variation is
due to the tool, some is caused by the limitations of what you can do with auto-
mated refactoring in different languages. I’m not going to analyze the capabilities
of different tools here, but I think it is worth talking a bit about some of the
underlying principles.

Chapter 2 Principles in Refactoring68

ptg26261585

A crude way to automate a refactoring is to do text manipulation, such as a
search/replace to change a name, or some simple reorganizing of code for Extract
Variable (119). This is a very crude approach that certainly can’t be trusted without
rerunning tests. It can, however, be a handy first step. I’ll use such macros in
Emacs to speed up my refactoring work when I don’t have more sophisticated
refactorings available to me.

To do refactoring properly, the tool has to operate on the syntax tree of the
code, not on the text. Manipulating the syntax tree is much more reliable to
preserve what the code is doing. This is why at the moment, most refactoring
capabilities are part of powerful IDEs—they use the syntax tree not just for
refactoring but also for code navigation, linting, and the like. This collaboration
between text and syntax tree is what takes them beyond text editors.

Refactoring isn’t just understanding and updating the syntax tree. The tool also
needs to figure out how to rerender the code into text back in the editor view.
All in all, implementing decent refactoring is a challenging programming
exercise—one that I’m mostly unaware of as I gaily use the tools.

Many refactorings are made much safer when applied in a language with static
typing. Consider the simple Rename Function (124). I might have addClient methods
on my Salesman class and on my Server class. I want to rename the one on my
salesman, but it is different in intent from the one on my server, which I don’t
want to rename. Without static typing, the tool will find it difficult to tell whether
any call to addClient is intended for the salesman. In the refactoring browser, it
would generate a list of call sites and I would manually decide which ones to
change. This makes it a nonsafe refactoring that forces me to rerun the tests.
Such a tool is still helpful—but the equivalent operation in Java can be completely
safe and automatic. Since the tool can resolve the method to the correct class
with static typing, I can be confident that the tool changes only the methods it
ought to.

Tools often go further. If I rename a variable, I can be prompted for changes
to comments that use that name. If I use Extract Function (106), the tool spots
some code that duplicates the new function’s body and offers to replace it with
a call. Programming with powerful refactorings like this is a compelling reason
to use an IDE rather than stick with a familiar text editor. Personally I’m a big
user of Emacs, but when working in Java I prefer IntelliJ IDEA or Eclipse—in large
part due to the refactoring support.

While sophisticated refactoring tools are almost magical in their ability to
safely refactor code, there are some edge cases where they slip up. Less mature
tools struggle with reflective calls, such as Method.invoke in Java (although more
mature tools handle this quite well). So even with mostly safe refactorings, it’s
wise to run the test suite every so often to ensure nothing has gone pear-shaped.
Usually I’m refactoring with a mix of automated and manual refactorings, so I
run my tests often enough.

The power of using the syntax tree to analyze and refactor programs is a
compelling advantage for IDEs over simple text editors, but many programmers

69Automated Refactorings

ptg26261585

prefer the flexibility of their favorite text editor and would like to have
both. A technology that’s currently gaining momentum is Language Servers
[langserver]: software that will form a syntax tree and present an API to text
editors. Such language servers can support many text editors and provide
commands to do sophisticated code analysis and refactoring operations.

Going Further

It seems a little strange to be talking about further reading in only the second
chapter, but this is as good a spot as any to point out there is more material out
there on refactoring that goes beyond the basics in this book.

This book has taught refactoring to many people, but I have focused more on
a refactoring reference than on taking readers through the learning process. If
you are looking for such a book, I suggest Bill Wake’s Refactoring Workbook [Wake]
that contains many exercises to practice refactoring.

Many of those who pioneered refactoring were also active in the software
patterns community. Josh Kerievsky tied these two worlds closely together with
Refactoring to Patterns [Kerievsky], which looks at the most valuable patterns from
the hugely influential “Gang of Four” book [gof] and shows how to use refactoring
to evolve towards them.

This book concentrates on refactoring in general-purpose programming, but
refactoring also applies in specialized areas. Two that have got useful attention
are Refactoring Databases [Ambler & Sadalage] (by Scott Ambler and Pramod
Sadalage) and Refactoring HTML [Harold] (by Elliotte Rusty Harold).

Although it doesn’t have refactoring in the title, also worth including is Michael
Feathers’s Working Effectively with Legacy Code [Feathers], which is primarily a
book about how to think about refactoring an older codebase with poor test
coverage.

Although this book (and its predecessor) are intended for programmers with
any language, there is a place for language-specific refactoring books. Two of my
former colleagues, Jay Fields and Shane Harvey, did this for the Ruby programming
language [Fields et al.].

For more up-to-date material, look up the web representation of this book, as
well as the main refactoring web site: refactoring.com [ref.com].

Chapter 2 Principles in Refactoring70

http://refactoring.com
http://ref.com

ptg26261585

by Kent Beck and Martin Fowler

“If it stinks, change it.”
— Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you
know how doesn’t mean you know when. Deciding when to start refactoring—and
when to stop—is just as important to refactoring as knowing how to operate the
mechanics of it.

Now comes the dilemma. It is easy to explain how to delete an instance variable
or create a hierarchy. These are simple matters. Trying to explain when you should
do these things is not so cut-and-dried. Instead of appealing to some vague notion
of programming aesthetics (which, frankly, is what we consultants usually do), I
wanted something a bit more solid.

When I was writing the first edition of this book, I was mulling over this issue
as I visited Kent Beck in Zurich. Perhaps he was under the influence of the odors
of his newborn daughter at the time, but he had come up with the notion of
describing the “when” of refactoring in terms of smells.

“Smells,” you say, “and that is supposed to be better than vague aesthetics?”
Well, yes. We have looked at lots of code, written for projects that span the gamut
from wildly successful to nearly dead. In doing so, we have learned to look for
certain structures in the code that suggest—sometimes, scream for—the possibility
of refactoring. (We are switching over to “we” in this chapter to reflect the fact
that Kent and I wrote this chapter jointly. You can tell the difference because the
funny jokes are mine and the others are his.)

One thing we won’t try to give you is precise criteria for when a refactoring is
overdue. In our experience, no set of metrics rivals informed human intuition.
What we will do is give you indications that there is trouble that can be solved
by a refactoring. You will have to develop your own sense of how many instance
variables or how many lines of code in a method are too many.

Use this chapter and the table on the inside back cover as a way to give you
inspiration when you’re not sure what refactorings to do. Read the chapter (or

71

Chapter 3

Bad Smells in Code

ptg26261585

skim the table) and try to identify what it is you’re smelling, then go to the re-
factorings we suggest to see whether they will help you. You may not find the
exact smell you can detect, but hopefully it should point you in the right direction.

Mysterious Name

Puzzling over some text to understand what’s going on is a great thing if you’re
reading a detective novel, but not when you’re reading code. We may fantasize
about being International Men of Mystery, but our code needs to be mundane
and clear. One of the most important parts of clear code is good names, so we
put a lot of thought into naming functions, modules, variables, classes, so they
clearly communicate what they do and how to use them.

Sadly, however, naming is one of the two hard things [mf-2h] in programming.
So, perhaps the most common refactorings we do are the renames: Change Function
Declaration (124) (to rename a function), Rename Variable (137), and Rename Field
(244). People are often afraid to rename things, thinking it’s not worth the trouble,
but a good name can save hours of puzzled incomprehension in the future.

Renaming is not just an exercise in changing names. When you can’t think of
a good name for something, it’s often a sign of a deeper design malaise. Puzzling
over a tricky name has often led us to significant simplifications to our code.

Duplicated Code

If you see the same code structure in more than one place, you can be sure that
your program will be better if you find a way to unify them. Duplication means
that every time you read these copies, you need to read them carefully to see if
there’s any difference. If you need to change the duplicated code, you have to
find and catch each duplication.

The simplest duplicated code problem is when you have the same expression
in two methods of the same class. Then all you have to do is Extract Function
(106) and invoke the code from both places. If you have code that’s similar, but
not quite identical, see if you can use Slide Statements (223) to arrange the code
so the similar items are all together for easy extraction. If the duplicate fragments
are in subclasses of a common base class, you can use Pull Up Method (350) to
avoid calling one from another.

Chapter 3 Bad Smells in Code72

ptg26261585

Long Function

In our experience, the programs that live best and longest are those with short
functions. Programmers new to such a code base often feel that no computation
ever takes place—that the program is an endless sequence of delegation. When
you have lived with such a program for a few years, however, you learn just how
valuable all those little functions are. All of the payoffs of indirection—explanation,
sharing, and choosing—are supported by small functions.

Since the early days of programming, people have realized that the longer a
function is, the more difficult it is to understand. Older languages carried an
overhead in subroutine calls, which deterred people from small functions. Modern
languages have pretty much eliminated that overhead for in-process calls. There
is still overhead for the reader of the code because you have to switch context
to see what the function does. Development environments that allow you to
quickly jump between a function call and its declaration, or to see both functions
at once, help eliminate this step, but the real key to making it easy to understand
small functions is good naming. If you have a good name for a function, you
mostly don’t need to look at its body.

The net effect is that you should be much more aggressive about decomposing
functions. A heuristic we follow is that whenever we feel the need to comment
something, we write a function instead. Such a function contains the code that
we wanted to comment but is named after the intention of the code rather than
the way it works. We may do this on a group of lines or even on a single line of
code. We do this even if the method call is longer than the code it replaces—
provided the method name explains the purpose of the code. The key here is
not function length but the semantic distance between what the method does
and how it does it.

Ninety-nine percent of the time, all you have to do to shorten a function is
Extract Function (106). Find parts of the function that seem to go nicely together
and make a new one.

If you have a function with lots of parameters and temporary variables, they
get in the way of extracting. If you try to use Extract Function (106), you end up
passing so many parameters to the extracted method that the result is scarcely
more readable than the original. You can often use Replace Temp with Query (178)
to eliminate the temps. Long lists of parameters can be slimmed down with
Introduce Parameter Object (140) and Preserve Whole Object (319).

If you’ve tried that and you still have too many temps and parameters, it’s time
to get out the heavy artillery: Replace Function with Command (337).

How do you identify the clumps of code to extract? A good technique is to
look for comments. They often signal this kind of semantic distance. A block of
code with a comment that tells you what it is doing can be replaced by a method
whose name is based on the comment. Even a single line is worth extracting if
it needs explanation.

73Long Function

ptg26261585

Conditionals and loops also give signs for extractions. Use Decompose Conditional
(260) to deal with conditional expressions. A big switch statement should have
its legs turned into single function calls with Extract Function (106). If there’s more
than one switch statement switching on the same condition, you should apply
Replace Conditional with Polymorphism (272).

With loops, extract the loop and the code within the loop into its own method.
If you find it hard to give an extracted loop a name, that may be because it’s
doing two different things—in which case don’t be afraid to use Split Loop (227)
to break out the separate tasks.

Long Parameter List

In our early programming days, we were taught to pass in as parameters every-
thing needed by a function. This was understandable because the alternative was
global data, and global data quickly becomes evil. But long parameter lists are
often confusing in their own right.

If you can obtain one parameter by asking another parameter for it, you can
use Replace Parameter with Query (324) to remove the second parameter. Rather
than pulling lots of data out of an existing data structure, you can use Preserve
Whole Object (319) to pass the original data structure instead. If several parameters
always fit together, combine them with Introduce Parameter Object (140). If a pa-
rameter is used as a flag to dispatch different behavior, use Remove Flag Argument
(314).

Classes are a great way to reduce parameter list sizes. They are particularly
useful when multiple functions share several parameter values. Then, you can
use Combine Functions into Class (144) to capture those common values as fields.
If we put on our functional programming hats, we’d say this creates a set of
partially applied functions.

Global Data

Since our earliest days of writing software, we were warned of the perils of
global data—how it was invented by demons from the fourth plane of hell, which
is the resting place of any programmer who dares to use it. And, although we
are somewhat skeptical about fire and brimstone, it’s still one of the most pungent
odors we are likely to run into. The problem with global data is that it can be
modified from anywhere in the code base, and there’s no mechanism to discover
which bit of code touched it. Time and again, this leads to bugs that breed from
a form of spooky action from a distance—and it’s very hard to find out where the
errant bit of program is. The most obvious form of global data is global variables,
but we also see this problem with class variables and singletons.

Chapter 3 Bad Smells in Code74

ptg26261585

Our key defense here is Encapsulate Variable (132), which is always our first
move when confronted with data that is open to contamination by any part of a
program. At least when you have it wrapped by a function, you can start seeing
where it’s modified and start to control its access. Then, it’s good to limit its
scope as much as possible by moving it within a class or module where only that
module’s code can see it.

Global data is especially nasty when it’s mutable. Global data that you can
guarantee never changes after the program starts is relatively safe—if you have
a language that can enforce that guarantee.

Global data illustrates Paracelsus’s maxim: The difference between a poison
and something benign is the dose. You can get away with small doses of global
data, but it gets exponentially harder to deal with the more you have. Even with
little bits, we like to keep it encapsulated—that’s the key to coping with changes
as the software evolves.

Mutable Data

Changes to data can often lead to unexpected consequences and tricky bugs. I
can update some data here, not realizing that another part of the software expects
something different and now fails—a failure that’s particularly hard to spot if it
only happens under rare conditions. For this reason, an entire school of software
development—functional programming—is based on the notion that data should
never change and that updating a data structure should always return a new copy
of the structure with the change, leaving the old data pristine.

These kinds of languages, however, are still a relatively small part of program-
ming; many of us work in languages that allow variables to vary. But this doesn’t
mean we should ignore the advantages of immutability—there are still many
things we can do to limit the risks on unrestricted data updates.

You can use Encapsulate Variable (132) to ensure that all updates occur through
narrow functions that can be easier to monitor and evolve. If a variable is being
updated to store different things, use Split Variable (240) both to keep them sepa-
rate and avoid the risky update. Try as much as possible to move logic out of
code that processes the update by using Slide Statements (223) and Extract Function
(106) to separate the side-effect-free code from anything that performs the update.
In APIs, use Separate Query from Modifier (306) to ensure callers don’t need to call
code that has side effects unless they really need to. We like to use Remove Setting
Method (331) as soon as we can—sometimes, just trying to find clients of a setter
helps spot opportunities to reduce the scope of a variable.

Mutable data that can be calculated elsewhere is particularly pungent. It’s not
just a rich source of confusion, bugs, and missed dinners at home—it’s also
unnecessary. We spray it with a concentrated solution of vinegar and Replace
Derived Variable with Query (248).

75Mutable Data

ptg26261585

Mutable data isn’t a big problem when it’s a variable whose scope is just a
couple of lines—but its risk increases as its scope grows. Use Combine Functions
into Class (144) or Combine Functions into Transform (149) to limit how much code
needs to update a variable. If a variable contains some data with internal structure,
it’s usually better to replace the entire structure rather than modify it in place,
using Change Reference to Value (252).

Divergent Change

We structure our software to make change easier; after all, software is meant to
be soft. When we make a change, we want to be able to jump to a single clear
point in the system and make the change. When you can’t do this, you are
smelling one of two closely related pungencies.

Divergent change occurs when one module is often changed in different ways
for different reasons. If you look at a module and say, “Well, I will have to change
these three functions every time I get a new database; I have to change these
four functions every time there is a new financial instrument,” this is an indication
of divergent change. The database interaction and financial processing problems
are separate contexts, and we can make our programming life better by moving
such contexts into separate modules. That way, when we have a change to one
context, we only have to understand that one context and ignore the other. We
always found this to be important, but now, with our brains shrinking with age,
it becomes all the more imperative. Of course, you often discover this only after
you’ve added a few databases or financial instruments; context boundaries are
usually unclear in the early days of a program and continue to shift as a software
system’s capabilities change.

If the two aspects naturally form a sequence—for example, you get data from
the database and then apply your financial processing on it—then Split Phase (154)
separates the two with a clear data structure between them. If there’s more back-
and-forth in the calls, then create appropriate modules and use Move Function
(198) to divide the processing up. If functions mix the two types of processing
within themselves, use Extract Function (106) to separate them before moving. If
the modules are classes, then Extract Class (182) helps formalize how to do the
split.

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff this
when, every time you make a change, you have to make a lot of little edits to a

Chapter 3 Bad Smells in Code76

ptg26261585

lot of different classes. When the changes are all over the place, they are hard
to find, and it’s easy to miss an important change.

In this case, you want to use Move Function (198) and Move Field (207) to put
all the changes into a single module. If you have a bunch of functions operating
on similar data, use Combine Functions into Class (144). If you have functions that
are transforming or enriching a data structure, use Combine Functions into Transform
(149). Split Phase (154) is often useful here if the common functions can combine
their output for a consuming phase of logic.

A useful tactic for shotgun surgery is to use inlining refactorings, such as Inline
Function (115) or Inline Class (186), to pull together poorly separated logic. You’ll
end up with a Long Method or a Large Class, but can then use extractions to
break it up into more sensible pieces. Even though we are inordinately fond of
small functions and classes in our code, we aren’t afraid of creating something
large as an intermediate step to reorganization.

Feature Envy

When we modularize a program, we are trying to separate the code into zones
to maximize the interaction inside a zone and minimize interaction between
zones. A classic case of Feature Envy occurs when a function in one module
spends more time communicating with functions or data inside another mod-
ule than it does within its own module. We’ve lost count of the times we’ve seen
a function invoking half-a-dozen getter methods on another object to calculate
some value. Fortunately, the cure for that case is obvious: The function clearly
wants to be with the data, so use Move Function (198) to get it there. Sometimes,
only a part of a function suffers from envy, in which case use Extract Function
(106) on the jealous bit, and Move Function (198) to give it a dream home.

Of course not all cases are cut-and-dried. Often, a function uses features of
several modules, so which one should it live with? The heuristic we use is to
determine which module has most of the data and put the function with that
data. This step is often made easier if you use Extract Function (106) to break the
function into pieces that go into different places.

Of course, there are several sophisticated patterns that break this rule. From
the Gang of Four [gof], Strategy and Visitor immediately leap to mind. Kent
Beck’s Self Delegation [Beck SBPP] is another. Use these to combat the diver-
gent change smell. The fundamental rule of thumb is to put things together that
change together. Data and the behavior that references that data usually change
together—but there are exceptions. When the exceptions occur, we move the
behavior to keep changes in one place. Strategy and Visitor allow you to
change behavior easily because they isolate the small amount of behavior that
needs to be overridden, at the cost of further indirection.

77Feature Envy

ptg26261585

Data Clumps

Data items tend to be like children: They enjoy hanging around together. Often,
you’ll see the same three or four data items together in lots of places: as fields
in a couple of classes, as parameters in many method signatures. Bunches of data
that hang around together really ought to find a home together. The first step
is to look for where the clumps appear as fields. Use Extract Class (182) on the
fields to turn the clumps into an object. Then turn your attention to method
signatures using Introduce Parameter Object (140) or Preserve Whole Object (319) to
slim them down. The immediate benefit is that you can shrink a lot of parameter
lists and simplify method calling. Don’t worry about data clumps that use only
some of the fields of the new object. As long as you are replacing two or more
fields with the new object, you’ll come out ahead.

A good test is to consider deleting one of the data values. If you did this, would
the others make any sense? If they don’t, it’s a sure sign that you have an object
that’s dying to be born.

You’ll notice that we advocate creating a class here, not a simple record struc-
ture. We do this because using a class gives you the opportunity to make a nice
perfume. You can now look for cases of feature envy, which will suggest behavior
that can be moved into your new classes. We’ve often seen this as a powerful
dynamic that creates useful classes and can remove a lot of duplication and ac-
celerate future development, allowing the data to become productive members
of society.

Primitive Obsession

Most programming environments are built on a widely used set of primitive
types: integers, floating point numbers, and strings. Libraries may add some ad-
ditional small objects such as dates. We find many programmers are curiously
reluctant to create their own fundamental types which are useful for their
domain—such as money, coordinates, or ranges. We thus see calculations that
treat monetary amounts as plain numbers, or calculations of physical quantities
that ignore units (adding inches to millimeters), or lots of code doing if (a < upper
&& a > lower).

Strings are particularly common petri dishes for this kind of odor: A telephone
number is more than just a collection of characters. If nothing else, a proper type
can often include consistent display logic for when it needs to be displayed in a
user interface. Representing such types as strings is such a common stench that
people call them “stringly typed” variables.

Chapter 3 Bad Smells in Code78

ptg26261585

You can move out of the primitive cave into the centrally heated world of
meaningful types by using Replace Primitive with Object (174). If the primitive is a
type code controlling conditional behavior, use Replace Type Code with Subclasses
(362) followed by Replace Conditional with Polymorphism (272).

Groups of primitives that commonly appear together are data clumps and
should be civilized with Extract Class (182) and Introduce Parameter Object (140).

Repeated Switches

Talk to a true object-oriented evangelist and they’ll soon get onto the evils of
switch statements. They’ll argue that any switch statement you see is begging for
Replace Conditional with Polymorphism (272). We’ve even heard some people argue
that all conditional logic should be replaced with polymorphism, tossing most
ifs into the dustbin of history.

Even in our more wild-eyed youth, we were never unconditionally opposed to
the conditional. Indeed, the first edition of this book had a smell entitled “switch
statements.” The smell was there because in the late 90’s we found polymorphism
sadly underappreciated, and saw benefit in getting people to switch over.

These days there is more polymorphism about, and it isn’t the simple red flag
that it often was fifteen years ago. Furthermore, many languages support more
sophisticated forms of switch statements that use more than some primitive code
as their base. So we now focus on the repeated switch, where the same condi-
tional switching logic (either in a switch/case statement or in a cascade of if/else
statements) pops up in different places. The problem with such duplicate
switches is that, whenever you add a clause, you have to find all the switches
and update them. Against the dark forces of such repetition, polymorphism
provides an elegant weapon for a more civilized codebase.

Loops

Loops have been a core part of programming since the earliest languages. But we
feel they are no more relevant today than bell-bottoms and flock wallpaper.
We disdained them at the time of the first edition—but Java, like most other
languages at the time, didn’t provide a better alternative. These days, however,
first-class functions are widely supported, so we can use Replace Loop with Pipeline
(231) to retire those anachronisms. We find that pipeline operations, such as
filter and map, help us quickly see the elements that are included in the processing
and what is done with them.

79Loops

ptg26261585

Lazy Element

We like using program elements to add structure—providing opportunities for
variation, reuse, or just having more helpful names. But sometimes the structure
isn’t needed. It may be a function that’s named the same as its body code reads,
or a class that is essentially one simple function. Sometimes, this reflects a function
that was expected to grow and be popular later, but never realized its dreams.
Sometimes, it’s a class that used to pay its way, but has been downsized with
refactoring. Either way, such program elements need to die with dignity. Usually
this means using Inline Function (115) or Inline Class (186). With inheritance, you
can use Collapse Hierarchy (380).

Speculative Generality

Brian Foote suggested this name for a smell to which we are very sensitive. You
get it when people say, “Oh, I think we’ll need the ability to do this kind of thing
someday” and thus add all sorts of hooks and special cases to handle things that
aren’t required. The result is often harder to understand and maintain. If all this
machinery were being used, it would be worth it. But if it isn’t, it isn’t. The ma-
chinery just gets in the way, so get rid of it.

If you have abstract classes that aren’t doing much, use Collapse Hierarchy (380).
Unnecessary delegation can be removed with Inline Function (115) and Inline Class
(186). Functions with unused parameters should be subject to Change Function
Declaration (124) to remove those parameters. You should also apply Change
Function Declaration (124) to remove any unneeded parameters, which often get
tossed in for future variations that never come to pass.

Speculative generality can be spotted when the only users of a function or class
are test cases. If you find such an animal, delete the test case and apply Remove
Dead Code (237).

Temporary Field

Sometimes you see a class in which a field is set only in certain circumstances.
Such code is difficult to understand, because you expect an object to need all of
its fields. Trying to understand why a field is there when it doesn’t seem to be
used can drive you nuts.

Use Extract Class (182) to create a home for the poor orphan variables. Use
Move Function (198) to put all the code that concerns the fields into this new class.

Chapter 3 Bad Smells in Code80

ptg26261585

You may also be able to eliminate conditional code by using Introduce Special Case
(289) to create an alternative class for when the variables aren’t valid.

Message Chains

You see message chains when a client asks one object for another object, which
the client then asks for yet another object, which the client then asks for yet an-
other another object, and so on. You may see these as a long line of getThis
methods, or as a sequence of temps. Navigating this way means the client is
coupled to the structure of the navigation. Any change to the intermediate
relationships causes the client to have to change.

The move to use here is Hide Delegate (189). You can do this at various points
in the chain. In principle, you can do this to every object in the chain, but doing
this often turns every intermediate object into a middle man. Often, a better al-
ternative is to see what the resulting object is used for. See whether you can use
Extract Function (106) to take a piece of the code that uses it and then Move
Function (198) to push it down the chain. If several clients of one of the objects
in the chain want to navigate the rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known
for our calm, reasoned moderation. Well, at least in this case we are.

Middle Man

One of the prime features of objects is encapsulation—hiding internal details from
the rest of the world. Encapsulation often comes with delegation. You ask a di-
rector whether she is free for a meeting; she delegates the message to her diary
and gives you an answer. All well and good. There is no need to know whether
the director uses a diary, an electronic gizmo, or a secretary to keep track of her
appointments.

c However, this can go too far. You look at a class’s interface and find half the
methods are delegating to this other class. After a while, it is time to use Remove
Middle Man (192) and talk to the object that really knows what’s going on. If only
a few methods aren’t doing much, use Inline Function (115) to inline them into
the caller. If there is additional behavior, you can use Replace Superclass with
Delegate (399) or Replace Subclass with Delegate (381) to fold the middle man into
the real object. That allows you to extend behavior without chasing all that
delegation.

81Middle Man

ptg26261585

Insider Trading

Software people like strong walls between their modules and complain bitterly
about how trading data around too much increases coupling. To make things
work, some trade has to occur, but we need to reduce it to a minimum and keep
it all above board.

Modules that whisper to each other by the coffee machine need to be separated
by using Move Function (198) and Move Field (207) to reduce the need to chat. If
modules have common interests, try to create a third module to keep that
commonality in a well-regulated vehicle, or use Hide Delegate (189) to make another
module act as an intermediary.

Inheritance can often lead to collusion. Subclasses are always going to know
more about their parents than their parents would like them to know. If it’s time
to leave home, apply Replace Subclass with Delegate (381) or Replace Superclass with
Delegate (399).

Large Class

When a class is trying to do too much, it often shows up as too many fields. When
a class has too many fields, duplicated code cannot be far behind.

You can Extract Class (182) to bundle a number of the variables. Choose vari-
ables to go together in the component that makes sense for each. For example,
“depositAmount” and “depositCurrency” are likely to belong together in a compo-
nent. More generally, common prefixes or suffixes for some subset of the variables
in a class suggest the opportunity for a component. If the component makes
sense with inheritance, you’ll find Extract Superclass (375) or Replace Type Code
with Subclasses (362) (which essentially is extracting a subclass) are often easier.

Sometimes a class does not use all of its fields all of the time. If so, you may
be able to do these extractions many times.

As with a class with too many instance variables, a class with too much code
is a prime breeding ground for duplicated code, chaos, and death. The simplest
solution (have we mentioned that we like simple solutions?) is to eliminate re-
dundancy in the class itself. If you have five hundred-line methods with lots of
code in common, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

The clients of such a class are often the best clue for splitting up the class.
Look at whether clients use a subset of the features of the class. Each subset is
a possible separate class. Once you’ve identified a useful subset, use Extract Class
(182), Extract Superclass (375), or Replace Type Code with Subclasses (362) to break
it out.

Chapter 3 Bad Smells in Code82

ptg26261585

Alternative Classes with Different Interfaces

One of the great benefits of using classes is the support for substitution, allow-
ing one class to swap in for another in times of need. But this only works if their
interfaces are the same. Use Change Function Declaration (124) to make functions
match up. Often, this doesn’t go far enough; keep using Move Function (198) to
move behavior into classes until the protocols match. If this leads to duplication,
you may be able to use Extract Superclass (375) to atone.

Data Class

These are classes that have fields, getting and setting methods for the fields, and
nothing else. Such classes are dumb data holders and are often being manipulated
in far too much detail by other classes. In some stages, these classes may have
public fields. If so, you should immediately apply Encapsulate Record (162) before
anyone notices. Use Remove Setting Method (331) on any field that should not be
changed.

Look for where these getting and setting methods are used by other classes.
Try to use Move Function (198) to move behavior into the data class. If you can’t
move a whole function, use Extract Function (106) to create a function that can
be moved.

Data classes are often a sign of behavior in the wrong place, which means you
can make big progress by moving it from the client into the data class itself. But
there are exceptions, and one of the best exceptions is a record that’s being used
as a result record from a distinct function invocation. A good example of this is
the intermediate data structure after you’ve applied Split Phase (154). A key
characteristic of such a result record is that it’s immutable (at least in practice).
Immutable fields don’t need to be encapsulated and information derived
from immutable data can be represented as fields rather than getting methods.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they
don’t want or need what they are given? They are given all these great gifts and
pick just a few to play with.

The traditional story is that this means the hierarchy is wrong. You need to
create a new sibling class and use Push Down Method (359) and Push Down Field
(361) to push all the unused code to the sibling. That way the parent holds only
what is common. Often, you’ll hear advice that all superclasses should be abstract.

83Refused Bequest

ptg26261585

You’ll guess from our snide use of “traditional” that we aren’t going to advise
this—at least not all the time. We do subclassing to reuse a bit of behavior all
the time, and we find it a perfectly good way of doing business. There is a
smell—we can’t deny it—but usually it isn’t a strong smell. So, we say that if the
refused bequest is causing confusion and problems, follow the traditional advice.
However, don’t feel you have to do it all the time. Nine times out of ten this
smell is too faint to be worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing behavior
but does not want to support the interface of the superclass. We don’t mind re-
fusing implementations—but refusing interface gets us on our high horses. In this
case, however, don’t fiddle with the hierarchy; you want to gut it by applying
Replace Subclass with Delegate (381) or Replace Superclass with Delegate (399).

Comments

Don’t worry, we aren’t saying that people shouldn’t write comments. In our olfac-
tory analogy, comments aren’t a bad smell; indeed they are a sweet smell. The
reason we mention comments here is that comments are often used as a deodor-
ant. It’s surprising how often you look at thickly commented code and notice
that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we’ve discussed
in the rest of this chapter. Our first action is to remove the bad smells by refac-
toring. When we’re finished, we often find that the comments are superfluous.

If you need a comment to explain what a block of code does, try Extract Function
(106). If the method is already extracted but you still need a comment to explain
what it does, use Change Function Declaration (124) to rename it. If you need to
state some rules about the required state of the system, use Introduce Assertion
(302).

When you feel the need to
write a comment, first try to
refactor the code so that any
comment becomes superfluous.

A good time to use a comment is
when you don’t know what to do. In
addition to describing what is going on,
comments can indicate areas in which
you aren’t sure. A comment can also ex-
plain why you did something. This kind
of information helps future modifiers,
especially forgetful ones.

Chapter 3 Bad Smells in Code84

ptg26261585

Refactoring is a valuable tool, but it can’t come alone. To do refactoring properly,
I need a solid suite of tests to spot my inevitable mistakes. Even with automated
refactoring tools, many of my refactorings will still need checking via a test suite.

I don’t find this to be a disadvantage. Even without refactoring, writing good
tests increases my effectiveness as a programmer. This was a surprise for me and
is counterintuitive for most programmers—so it’s worth explaining why.

The Value of Self-Testing Code

If you look at how most programmers spend their time, you’ll find that writing
code is actually quite a small fraction. Some time is spent figuring out what ought
to be going on, some time is spent designing, but most time is spent debugging.
I’m sure every reader can remember long hours of debugging—often, well into
the night. Every programmer can tell a story of a bug that took a whole day (or
more) to find. Fixing the bug is usually pretty quick, but finding it is a nightmare.
And then, when you do fix a bug, there’s always a chance that another one will
appear and that you might not even notice it till much later. And you’ll spend
ages finding that bug.

The event that started me on the road to self-testing code was a talk at OOPSLA
in 1992. Someone (I think it was “Bedarra” Dave Thomas) said offhandedly,
“Classes should contain their own tests.” So I decided to incorporate tests into
the code base together with the production code. As I was also doing iterative
development, I tried adding tests as I completed each iteration. The project on
which I was working at that time was quite small, so we put out iterations every
week or so. Running the tests became fairly straightforward—but although it was
easy, it was still pretty boring. This was because every test produced output to
the console that I had to check. Now I’m a pretty lazy person and am prepared
to work quite hard in order to avoid work. I realized that, instead of looking at
the screen to see if it printed out some information from the model, I could get the

85

Chapter 4

Building Tests

ptg26261585

computer to make that test. All I had to do was put the output I expected in the
test code and do a comparison. Now I could run the tests and they would just
print “OK” to the screen if all was well. The software was now self-testing.

Make sure all tests are fully
automatic and that they check
their own results.

Now it was easy to run tests—as easy
as compiling. So I started to run tests
every time I compiled. Soon, I began to
notice my productivity had shot upward.
I realized that I wasn’t spending so much
time debugging. If I added a bug that

was caught by a previous test, it would show up as soon as I ran that test. The
test had worked before, so I would know that the bug was in the work I had
done since I last tested. And I ran the tests frequently—which means only a few
minutes had elapsed. I thus knew that the source of the bug was the code I had
just written. As it was a small amount of code that was still fresh in my mind,
the bug was easy to find. Bugs that would have otherwise taken an hour or more
to find now took a couple of minutes at most. Not only was my software
self-testing, but by running the tests frequently I had a powerful bug detector.

As I noticed this, I became more aggressive about doing the tests. Instead of
waiting for the end of an increment, I would add the tests immediately after
writing a bit of function. Every day I would add a couple of new features and
the tests to test them. I hardly ever spent more than a few minutes hunting for
a regression bug.

A suite of tests is a powerful
bug detector that decapitates
the time it takes to find bugs.

Tools for writing and organizing these
tests have developed a great deal since
my experiments. While flying from
Switzerland to Atlanta for OOPSLA 1997,
Kent Beck paired with Erich Gamma to
port his unit testing framework from

Smalltalk to Java. The resulting framework, called JUnit, has been enormously
influential for program testing, inspiring a huge variety of similar tools [mf-xunit]
in lots of different languages.

Admittedly, it is not so easy to persuade others to follow this route. Writing
the tests means a lot of extra code to write. Unless you have actually experienced
how it speeds programming, self-testing does not seem to make sense. This is
not helped by the fact that many people have never learned to write tests or even
to think about tests. When tests are manual, they are gut-wrenchingly boring.
But when they are automatic, tests can actually be quite fun to write.

In fact, one of the most useful times to write tests is before I start programming.
When I need to add a feature, I begin by writing the test. This isn’t as backward
as it sounds. By writing the test, I’m asking myself what needs to be done to add
the function. Writing the test also concentrates me on the interface rather than the
implementation (always a good thing). It also means I have a clear point at which
I’m done coding—when the test works.

Chapter 4 Building Tests86

ptg26261585

Kent Beck baked this habit of writing the test first into a technique called Test-
Driven Development (TDD) [mf-tdd]. The Test-Driven Development approach
to programming relies on short cycles of writing a (failing) test, writing the code to
make that test work, and refactoring to ensure the result is as clean as possible.
This test-code-refactor cycle should occur many times per hour, and can be a
very productive and calming way to write code. I’m not going to discuss it further
here, but I do use and warmly recommend it.

That’s enough of the polemic. Although I believe everyone would benefit by
writing self-testing code, it is not the point of this book. This book is about
refactoring. Refactoring requires tests. If you want to refactor, you have to write
tests. This chapter gives you a start in doing this for JavaScript. This is not
a testing book, so I’m not going to go into much detail. I’ve found, however, that
with testing a remarkably small amount of work can have surprisingly big benefits.

As with everything else in this book, I describe the testing approach using ex-
amples. When I develop code, I write the tests as I go. But sometimes, I need to
refactor some code without tests—then I have to make the code self-testing before
I begin.

Sample Code to Test

Here’s some code to look at and test. The code supports a simple application
that allows a user to examine and manipulate a production plan. The (crude) UI
looks like this:

87Sample Code to Test

ptg26261585

The production plan has a demand and price for each province. Each province
has producers, each of which can produce a certain number of units at a particular
price. The UI also shows how much revenue each producer would earn if they
sell all their production. At the bottom, the screen shows the shortfall in produc-
tion (the demand minus the total production) and the profit for this plan. The
UI allows the user to manipulate the demand, price, and the individual producer’s
production and costs to see the effect on the production shortfall and profits.
Whenever a user changes any number in the display, all the others update
immediately.

I’m showing a user interface here, so you can sense how the software is used,
but I’m only going to concentrate on the business logic part of the software—that
is, the classes that calculate the profit and the shortfall, not the code that generates
the HTML and hooks up the field changes to the underlying business logic. This
chapter is just an introduction to the world of self-testing code, so it makes sense
for me to start with the easiest case—which is code that doesn’t involve user in-
terface, persistence, or external service interaction. Such separation, however, is
a good idea in any case: Once this kind of business logic gets at all complicated,
I will separate it from the UI mechanics so I can more easily reason about it and
test it.

This business logic code involves two classes: one that represents a single
producer, and the other that represents a whole province. The province’s con-
structor takes a JavaScript object—one we could imagine being supplied by a
JSON document.

Here’s the code that loads the province from the JSON data:

class Province…
 constructor(doc) {
 this._name = doc.name;
 this._producers = [];
 this._totalProduction = 0;
 this._demand = doc.demand;
 this._price = doc.price;
 doc.producers.forEach(d => this.addProducer(new Producer(this, d)));
 }
 addProducer(arg) {
 this._producers.push(arg);
 this._totalProduction += arg.production;
 }

This function creates suitable JSON data. I can create a sample province for
testing by constructing a province object with the result of this function.

Chapter 4 Building Tests88

ptg26261585

top level…
 function sampleProvinceData() {
 return {
 name: "Asia",
 producers: [
 {name: "Byzantium", cost: 10, production: 9},
 {name: "Attalia", cost: 12, production: 10},
 {name: "Sinope", cost: 10, production: 6},
],
 demand: 30,
 price: 20
 };
 }

The province class has accessors for the various data values:

class Province…
 get name() {return this._name;}
 get producers() {return this._producers.slice();}
 get totalProduction() {return this._totalProduction;}
 set totalProduction(arg) {this._totalProduction = arg;}
 get demand() {return this._demand;}
 set demand(arg) {this._demand = parseInt(arg);}
 get price() {return this._price;}
 set price(arg) {this._price = parseInt(arg);}

The setters will be called with strings from the UI that contain the numbers,
so I need to parse the numbers to use them reliably in calculations.

The producer class is mostly a simple data holder:

class Producer…
 constructor(aProvince, data) {
 this._province = aProvince;
 this._cost = data.cost;
 this._name = data.name;
 this._production = data.production || 0;
 }
 get name() {return this._name;}
 get cost() {return this._cost;}
 set cost(arg) {this._cost = parseInt(arg);}

 get production() {return this._production;}
 set production(amountStr) {
 const amount = parseInt(amountStr);
 const newProduction = Number.isNaN(amount) ? 0 : amount;
 this._province.totalProduction += newProduction - this._production;
 this._production = newProduction;
 }

89Sample Code to Test

ptg26261585

The way that set production updates the derived data in the province is ugly, and
whenever I see that I want to refactor to remove it. But I have to write tests before
that I can refactor it.

The calculation for the shortfall is simple.

class Province…
 get shortfall() {
 return this._demand - this.totalProduction;
 }

That for the profit is a bit more involved.

class Province…
 get profit() {
 return this.demandValue - this.demandCost;
 }
 get demandCost() {
 let remainingDemand = this.demand;
 let result = 0;
 this.producers
 .sort((a,b) => a.cost - b.cost)
 .forEach(p => {
 const contribution = Math.min(remainingDemand, p.production);
 remainingDemand -= contribution;
 result += contribution * p.cost;
 });
 return result;
 }
 get demandValue() {
 return this.satisfiedDemand * this.price;
 }
 get satisfiedDemand() {
 return Math.min(this._demand, this.totalProduction);
 }

A First Test

To test this code, I’ll need some sort of testing framework. There are many out
there, even just for JavaScript. The one I’ll use is Mocha [mocha], which is rea-
sonably common and well-regarded. I won’t go into a full explanation of how to
use the framework, just show some example tests with it. You should be able to
adapt, easily enough, a different framework to build similar tests.

Chapter 4 Building Tests90

ptg26261585

Here is a simple test for the shortfall calculation:

describe('province', function() {
 it('shortfall', function() {
 const asia = new Province(sampleProvinceData());
 assert.equal(asia.shortfall, 5);
 });
});

The Mocha framework divides up the test code into blocks, each grouping to-
gether a suite of tests. Each test appears in an it block. For this simple case, the
test has two steps. The first step sets up some fixture—data and objects that are
needed for the test: in this case, a loaded province object. The second line verifies
some characteristic of that fixture—in this case, that the shortfall is the amount
that should be expected given the initial data.

Different developers use the descriptive strings in the describe and it blocks differently.
Some would write a sentence that explains what the test is testing, but others prefer
to leave them empty, arguing that the descriptive sentence is just duplicating the code
in the same way a comment does. I like to put in just enough to identify which test is
which when I get failures.

If I run this test in a NodeJS console, the output looks like this:

’’’’’’’’’’’’’’

 1 passing (61ms)

Note the simplicity of the feedback—just a summary of how many tests are run
and how many have passed.

Always make sure a test will
fail when it should.

When I write a test against existing
code like this, it’s nice to see that all is
well—but I’m naturally skeptical. Particu-
larly, once I have a lot of tests running,
I’m always nervous that a test isn’t really
exercising the code the way I think it is, and thus won’t catch a bug when I need
it to. So I like to see every test fail at least once when I write it. My favorite way
of doing that is to temporarily inject a fault into the code, for example:

class Province…
 get shortfall() {
 return this._demand - this.totalProduction * 2;
 }

Here’s what the console now looks like:

91A First Test

ptg26261585

!

 0 passing (72ms)
 1 failing

 1) province shortfall:
 AssertionError: expected -20 to equal 5
 at Context.<anonymous> (src/tester.js:10:12)

The framework indicates which test failed and gives some information about
the nature of the failure—in this case, what value was expected and what value
actually turned up. I therefore notice at once that something failed—and I can
immediately see which tests failed, giving me a clue as to what went wrong (and,
in this case, confirming the failure was where I injected it).

Run tests frequently. Run those
exercising the code you’re
working on at least every few
minutes; run all tests at least
daily.

In a real system, I might have thou-
sands of tests. A good test framework
allows me to run them easily and to
quickly see if any have failed. This simple
feedback is essential to self-testing code.
When I work, I’ll be running tests very
frequently—checking progress with new
code or checking for mistakes with
refactoring.

The Mocha framework can use different libraries, which it calls assertion li-
braries, to verify the fixture for a test. Being JavaScript, there are a quadzillion
of them out there, some of which may still be current when you’re reading this.
The one I’m using at the moment is Chai [chai]. Chai allows me to write my
validations either using an “assert” style:

describe('province', function() {
 it('shortfall', function() {
 const asia = new Province(sampleProvinceData());
 assert.equal(asia.shortfall, 5);
 });
});

or an “expect” style:

describe('province', function() {
 it('shortfall', function() {
 const asia = new Province(sampleProvinceData());
 expect(asia.shortfall).equal(5);
 });
});

I usually prefer the assert style, but at the moment I mostly use the expect style
while working in JavaScript.

Different environments provide different ways to run tests. When I’m program-
ming in Java, I use an IDE that gives me a graphical test runner. Its progress bar

Chapter 4 Building Tests92

ptg26261585

is green as long as all the tests pass, and turns red should any of them fail. My
colleagues often use the phrases “green bar” and “red bar” to describe the state
of tests. I might say, “Never refactor on a red bar,” meaning you shouldn’t be
refactoring if your test suite has a failing test. Or, I might say, “Revert to green”
to say you should undo recent changes and go back to the last state where you
had all-passing test suite (usually by going back to a recent version-control
checkpoint).

Graphical test runners are nice, but not essential. I usually have my tests set
to run from a single key in Emacs, and observe the text feedback in my com-
pilation window. The key point is that I can quickly see if my tests are all OK.

Add Another Test

Now I’ll continue adding more tests. The style I follow is to look at all the things
the class should do and test each one of them for any conditions that might
cause the class to fail. This is not the same as testing every public method, which
is what some programmers advocate. Testing should be risk-driven; remember,
I’m trying to find bugs, now or in the future. Therefore I don’t test accessors that
just read and write a field: They are so simple that I’m not likely to find a bug
there.

This is important because trying to write too many tests usually leads to not
writing enough. I get many benefits from testing even if I do only a little testing.
My focus is to test the areas that I’m most worried about going wrong. That way
I get the most benefit for my testing effort.

It is better to write and run
incomplete tests than not to
run complete tests.

So I’ll start by hitting the other main
output for this code—the profit calcula-
tion. Again, I’ll just do a basic test for
profit on my initial fixture.

describe('province', function() {
 it('shortfall', function() {
 const asia = new Province(sampleProvinceData());
 expect(asia.shortfall).equal(5);
 });
 it('profit', function() {
 const asia = new Province(sampleProvinceData());
 expect(asia.profit).equal(230);
 });
});

That shows the final result, but the way I got it was by first setting the expected
value to a placeholder, then replacing it with whatever the program produced (230).
I could have calculated it by hand myself, but since the code is supposed to be
working correctly, I’ll just trust it for now. Once I have that new test working

93Add Another Test

ptg26261585

correctly, I break it by altering the profit calculation with a spurious * 2. I satisfy
myself that the test fails as it should, then revert my injected fault. This pat-
tern—write with a placeholder for the expected value, replace the placeholder
with the code’s actual value, inject a fault, revert the fault—is a common one I
use when adding tests to existing code.

There is some duplication between these tests—both of them set up the fixture
with the same first line. Just as I’m suspicious of duplicated code in regular code,
I’m suspicious of it in test code, so will look to remove it by factoring to a common
place. One option is to raise the constant to the outer scope.

describe('province', function() {
 const asia = new Province(sampleProvinceData()); // DON'T DO THIS
 it('shortfall', function() {
 expect(asia.shortfall).equal(5);
 });
 it('profit', function() {
 expect(asia.profit).equal(230);
 });
});

But as the comment indicates, I never do this. It will work for the moment,
but it introduces a petri dish that’s primed for one of the nastiest bugs in testing—a
shared fixture which causes tests to interact. The const keyword in JavaScript only
means the reference to asia is constant, not the content of that object. Should a
future test change that common object, I’ll end up with intermittent test failures
due to tests interacting through the shared fixture, yielding different results de-
pending on what order the tests are run in. That’s a nondeterminism in the tests
that can lead to long and difficult debugging at best, and a collapse of confidence
in the tests at worst. Instead, I prefer to do this:

describe('province', function() {
 let asia;
 beforeEach(function() {
 asia = new Province(sampleProvinceData());
 });
 it('shortfall', function() {
 expect(asia.shortfall).equal(5);
 });
 it('profit', function() {
 expect(asia.profit).equal(230);
 });
});

The beforeEach clause is run before each test runs, clearing out asia and setting
it to a fresh value each time. This way I build a fresh fixture before each test is
run, which keeps the tests isolated and prevents the nondeterminism that causes
so much trouble.

When I give this advice, some people are concerned that building a fresh fixture
every time will slow down the tests. Most of the time, it won’t be noticeable. If

Chapter 4 Building Tests94

ptg26261585

it is a problem, I’d consider a shared fixture, but then I will need to be really
careful that no test ever changes it. I can also use a shared fixture if I’m sure it
is truly immutable. But my reflex is to use a fresh fixture because the debugging
cost of making a mistake with a shared fixture has bit me too often in the past.

Given I run the setup code in beforeEach with every test, why not leave the setup
code inside the individual it blocks? I like my tests to all operate on a common
bit of fixture, so I can become familiar with that standard fixture and see the
various characteristics to test on it. The presence of the beforeEach block signals to
the reader that I’m using a standard fixture. You can then look at all the tests
within the scope of that describe block and know they all take the same base data
as a starting point.

Modifying the Fixture

So far, the tests I’ve written show how I probe the properties of the fixture once
I’ve loaded it. But in use, that fixture will be regularly updated by the users as
they change values.

Most of the updates are simple setters, and I don’t usually bother to test those
as there’s little chance they will be the source of a bug. But there is some compli-
cated behavior around Producer’s production setter, so I think that’s worth a test.

describe(’province’…
 it('change production', function() {
 asia.producers[0].production = 20;
 expect(asia.shortfall).equal(-6);
 expect(asia.profit).equal(292);
 });

This is a common pattern. I take the initial standard fixture that’s set up by
the beforeEach block, I exercise that fixture for the test, then I verify the fixture has
done what I think it should have done. If you read much about testing, you’ll
hear these phases described variously as setup-exercise-verify, given-when-then,
or arrange-act-assert. Sometimes you’ll see all the steps present within the test
itself, in other cases the common early phases can be pushed out into standard
setup routines such as beforeEach.

(There is an implicit fourth phase that’s usually not mentioned: teardown. Teardown
removes the fixture between tests so that different tests don’t interact with each other.
By doing all my setup in beforeEach, I allow the test framework to implicitly tear down
my fixture between tests, so I can take the teardown phase for granted. Most writers
on tests gloss over teardown—reasonably so, since most of the time we ignore it. But
occasionally, it can be important to have an explicit teardown operation, particularly if
we have a fixture that we have to share between tests because it’s slow to create.)

95Modifying the Fixture

ptg26261585

In this test, I’m verifying two different characteristics in a single it clause. As
a general rule, it’s wise to have only a single verify statement in each it clause.
This is because the test will fail on the first verification failure—which can often
hide useful information when you’re figuring out why a test is broken. In this
case, I feel the two are closely enough connected that I’m happy to have them
in the same test. Should I wish to separate them into separate it clauses, I can
do that later.

Probing the Boundaries

So far my tests have focused on regular usage, often referred to as “happy path”
conditions where everything is going OK and things are used as expected. But
it’s also good to throw tests at the boundaries of these conditions—to see what
happens when things might go wrong.

Whenever I have a collection of something, such as producers in this example,
I like to see what happens when it’s empty.

describe('no producers', function() {
 let noProducers;
 beforeEach(function() {
 const data = {
 name: "No proudcers",
 producers: [],
 demand: 30,
 price: 20
 };
 noProducers = new Province(data);
 });
 it('shortfall', function() {
 expect(noProducers.shortfall).equal(30);
 });
 it('profit', function() {
 expect(noProducers.profit).equal(0);
 });

With numbers, zeros are good things to probe:

describe(’province’…
 it('zero demand', function() {
 asia.demand = 0;
 expect(asia.shortfall).equal(-25);
 expect(asia.profit).equal(0);
 });

as are negatives:

Chapter 4 Building Tests96

ptg26261585

describe(’province’…
 it('negative demand', function() {
 asia.demand = -1;
 expect(asia.shortfall).equal(-26);
 expect(asia.profit).equal(-10);
 });

At this point, I may start to wonder if a negative demand resulting in a negative
profit really makes any sense for the domain. Shouldn’t the minimum demand
be zero? In which case, perhaps, the setter should react differently to a negative
argument—raising an error or setting the value to zero anyway. These are good
questions to ask, and writing tests like this helps me think about how the code
ought to react to boundary cases.

Think of the boundary condi-
tions under which things might
go wrong and concentrate your
tests there.

The setters take a string from the fields
in the UI, which are constrained to only
accept numbers—but they can still be
blank, so I should have tests that ensure
the code responds to the blanks the way
I want it to.

describe(’province’…
 it('empty string demand', function() {
 asia.demand = "";
 expect(asia.shortfall).NaN;
 expect(asia.profit).NaN;
 });

Notice how I’m playing the part of an enemy to my code. I’m actively thinking
about how I can break it. I find that state of mind to be both productive and fun.
It indulges the mean-spirited part of my psyche.

This one is interesting:

describe('string for producers', function() {
 it('', function() {
 const data = {
 name: "String producers",
 producers: "",
 demand: 30,
 price: 20
 };
 const prov = new Province(data);
 expect(prov.shortfall).equal(0);
 });

This doesn’t produce a simple failure reporting that the shortfall isn’t 0. Here’s
the console output:

97Probing the Boundaries

ptg26261585

’’’’’’’’’!

 9 passing (74ms)
 1 failing

 1) string for producers :
 TypeError: doc.producers.forEach is not a function
 at new Province (src/main.js:22:19)
 at Context.<anonymous> (src/tester.js:86:18)

Mocha treats this as a failure—but many testing frameworks distinguish between
this situation, which they call an error, and a regular failure. A failure indicates
a verify step where the actual value is outside the bounds expected by the verify
statement. But this error is a different animal—it’s an exception raised during an
earlier phase (in this case, the setup). This looks like an exception that the authors
of the code hadn’t anticipated, so we get an error sadly familiar to JavaScript
programmers (“… is not a function”).

How should the code respond to such a case? One approach is to add some
handling that would give a better error response—either raising a more meaningful
error message, or just setting producers to an empty array (with perhaps a log
message). But there may also be valid reasons to leave it as it is. Perhaps the
input object is produced by a trusted source—such as another part of the same
code base. Putting in lots of validation checks between modules in the same code
base can result in duplicate checks that cause more trouble than they are worth,
especially if they duplicate validation done elsewhere. But if that input object is
coming in from an external source, such as a JSON-encoded request, then valida-
tion checks are needed, and should be tested. In either case, writing tests like
this raises these kinds of questions.

If I’m writing tests like this before refactoring, I would probably discard this
test. Refactoring should preserve observable behavior; an error like this is outside
the bounds of observable, so I need not be concerned if my refactoring
changes the code’s response to this condition.

If this error could lead to bad data running around the program, causing a failure that
will be hard to debug, I might use Introduce Assertion (302) to fail fast. I don’t add tests
to catch such assertion failures, as they are themselves a form of test.

Don’t let the fear that testing
can’t catch all bugs stop you
from writing tests that catch
most bugs.

When do you stop? I’m sure you have
heard many times that you cannot prove
that a program has no bugs by testing.
That’s true, but it does not affect the
ability of testing to speed up program-
ming. I’ve seen various proposed rules
to ensure you have tested every combi-
nation of everything. It’s worth taking a

look at these—but don’t let them get to you. There is a law of diminishing returns
in testing, and there is the danger that by trying to write too many tests you

Chapter 4 Building Tests98

ptg26261585

become discouraged and end up not writing any. You should concentrate on
where the risk is. Look at the code and see where it becomes complex. Look at
a function and consider the likely areas of error. Your tests will not find every
bug, but as you refactor, you will understand the program better and thus find
more bugs. Although I always start refactoring with a test suite, I invariably add
to it as I go along.

Much More Than This

That’s as far as I’m going to go with this chapter—after all, this is a book on
refactoring, not on testing. But testing is an important topic, both because it’s a
necessary foundation for refactoring and because it’s a valuable tool in its own
right. While I’ve been happy to see the growth of refactoring as a programming
practice since I wrote this book, I’ve been even happier to see the change in atti-
tudes to testing. Previously seen as the responsibility of a separate (and inferior)
group, testing is now increasingly a first-class concern of any decent software
developer. Architectures often are, rightly, judged on their testability.

The kinds of tests I’ve shown here are unit tests, designed to operate on a
small area of the code and run fast. They are the backbone of self-testing code;
most tests in such a system are unit tests. There are other kinds of tests too, fo-
cusing on integration between components, exercising multiple levels of the
software together, looking for performance issues, etc. (And even more varied
than the types of tests are the arguments people get into about how to classify
tests.)

Like most aspects of programming, testing is an iterative activity. Unless you
are either very skilled or very lucky, you won’t get your tests right the first time.
I find I’m constantly working on the test suite—just as much as I work on the
main code. Naturally, this means adding new tests as I add new features, but it
also involves looking at the existing tests. Are they clear enough? Do I need to
refactor them so I can more easily understand what they are doing? Have I got
the right tests? An important habit to get into is to respond to a bug by first
writing a test that clearly reveals the bug. Only after I have the test do I fix the
bug. By having the test, I know the bug will stay dead. I also think about that
bug and its test: Does it give me clues to other gaps in the test suite?

When you get a bug report,
start by writing a unit test that
exposes the bug.

A common question is, “How much
testing is enough?” There’s no good
measurement for this. Some people advo-
cate using test coverage [mf-tc] as a
measure, but test coverage analysis is
only good for identifying untested areas
of the code, not for assessing the quality of a test suite.

99Much More Than This

ptg26261585

The best measure for a good enough test suite is subjective: How confident
are you that if someone introduces a defect into the code, some test will fail?
This isn’t something that can be objectively analyzed, and it doesn’t account for
false confidence, but the aim of self-testing code is to get that confidence. If I
can refactor my code and be pretty sure that I’ve not introduced a bug because
my tests come back green—then I can be happy that I have good enough tests.

It is possible to write too many tests. One sign of that is when I spend more
time changing the tests than the code under test—and I feel the tests are slowing
me down. But while over-testing does happen, it’s vanishingly rare compared to
under-testing.

Chapter 4 Building Tests100

ptg26261585

The rest of this book is a catalog of refactorings. This catalog started from my
personal notes that I made to remind myself how to do refactorings in a safe and
efficient way. Since then, I’ve refined the catalog, and there’s more of it that
comes from deliberate exploration of some refactoring moves. It’s still something
I use when I do a refactoring I haven’t done in a while.

Format of the Refactorings

As I describe the refactorings in the catalog, I use a standard format. Each refac-
toring has five parts, as follows:

I begin with a name. The name is important to building a vocabulary of
refactorings. This is the name I use elsewhere in the book. Refactorings often
go by different names now, so I also list any aliases that seem to be common.

I follow the name with a short sketch of the refactoring. This helps you find
a refactoring more quickly.

The motivation describes why the refactoring should be done and describes
circumstances in which it shouldn’t be done.

The mechanics are a concise, step-by-step description of how to carry out
the refactoring.

The examples show a very simple use of the refactoring to illustrate how it
works.

The sketch shows a code example of the transformation of the refactoring. It’s
not meant to explain what the refactoring is, let alone how to do it, but it should
remind you what the refactoring is if you’ve come across it before. If not, you’ll
probably need to work through the example to get a better idea. I also include

101

Chapter 5

Introducing the Catalog

ptg26261585

a small graphic; again, I don’t intend it to be explanatory—it’s more of a graphic
memory-jogger.

The mechanics come from my own notes to remember how to do the refactoring
when I haven’t done it for a while. As such, they are somewhat terse, usually
without explanations of why the steps are done that way. I give a more expansive
explanation in the example. This way, the mechanics are short notes you can
refer to easily when you know the refactoring but need to look up the steps (at
least this is how I use them). You’ll probably need to read the examples when
you first do the refactoring.

I’ve written the mechanics in such a way that each step of each refactoring is
as small as possible. I emphasize the safe way of doing the refactoring—which
is to take very small steps and test after every one. At work, I usually take larger
steps than some of the baby steps described, but if I run into a bug, I back out
the last step and take the smaller steps. The steps include a number of references
to special cases. The steps thus also function as a checklist; I often forget these
things myself.

Although I (with few exceptions) only list one set of mechanics, they aren’t
the only way to carry out the refactoring. I selected the mechanics in the book
because they work pretty well most of the time. It’s likely you’ll vary them as
you get more practice in refactoring, and that’s fine. Just remember that the key
is to take small steps—and the trickier the situation, the smaller the steps.

The examples are of the laughably simple textbook kind. My aim with the ex-
amples is to help explain the basic refactoring with minimal distractions, so I
hope you’ll forgive the simplicity. (They are certainly not examples of good
business modeling.) I’m sure you’ll be able to apply them to your rather more
complex situations. Some very simple refactorings don’t have examples because
I didn’t think an example would add much.

In particular, remember that the examples are included only to illustrate the
one refactoring under discussion. In most cases, there are still problems with
the code at the end—but fixing these problems requires other refactorings. In a
few cases in which refactorings often go together, I carry examples from one re-
factoring to another. In most cases, I leave the code as it is after the single
refactoring. I do this to make each refactoring self-contained, because the primary
role of the catalog is to be a reference.

I use color to highlight changed code where it may be difficult to spot among
code that has not been changed. I do not use highlighting for all changed code,
because too much defeats the purpose.

The Choice of Refactorings

This is by no means a complete catalog of refactorings. It is, I hope, a collection
of those most useful to have them written down. By “most useful” I mean those

Chapter 5 Introducing the Catalog102

ptg26261585

that are both commonly used and worthwhile to name and describe. I find
something worthwhile to describe for a combination of reasons: Some have in-
teresting mechanics which help general refactoring skills, some have a strong
effect on improving the design of code.

Some refactorings are missing because they are so small and straightforward
that I don’t feel they are worth writing up. An example in the first edition was
Slide Statements (223)—which I use frequently but didn’t recognize as something
I should include in the catalog (obviously, I changed my mind for this edition).
These may well get added to the book over time, depending on how much energy
I devote to new refactorings in the future.

Another category is refactorings that logically exist, but either aren’t used much
by me or show a simple similarity to other refactorings. Every refactoring in this
book has a logical inverse refactoring, but I didn’t write all of them up because
I don’t find many inverses interesting. Encapsulate Variable (132) is a common and
powerful refactoring but its inverse is something I hardly ever do (and it is easy
to perform anyway) so I didn’t think we need a catalog entry for it.

103The Choice of Refactorings

ptg26261585

This page intentionally left blank

ptg26261585

I’m starting the catalog with a set of refactorings that I consider the most useful
to learn first.

Probably the most common refactoring I do is extracting code into a function
(Extract Function (106)) or a variable (Extract Variable (119)). Since refactoring is
all about change, it’s no surprise that I also frequently use the inverses of those
two (Inline Function (115) and Inline Variable (123)).

Extraction is all about giving names, and I often need to change the names as
I learn. Change Function Declaration (124) changes names of functions; I also
use that refactoring to add or remove a function’s arguments. For variables, I use
Rename Variable (137), which relies on Encapsulate Variable (132). When changing
function arguments, I often find it useful to combine a common clump of
arguments into a single object with Introduce Parameter Object (140).

Forming and naming functions are essential low-level refactorings—but, once
created, it’s necessary to group functions into higher-level modules. I use Combine
Functions into Class (144) to group functions, together with the data they operate
on, into a class. Another path I take is to combine them into a transform (Combine
Functions into Transform (149)), which is particularly handy with read-only data.
At a step further in scale, I can often form these modules into distinct processing
phases using Split Phase (154).

105

Chapter 6

A First Set of Refactorings

ptg26261585

Extract Function
formerly: Extract Method
inverse of: Inline Function (115)

function printOwing(invoice) {
 printBanner();
 let outstanding = calculateOutstanding();

 //print details
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
}

function printOwing(invoice) {
 printBanner();
 let outstanding = calculateOutstanding();
 printDetails(outstanding);

 function printDetails(outstanding) {
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 }
}

Motivation

Extract Function is one of the most common refactorings I do. (Here, I use the
term “function” but the same is true for a method in an object-oriented language,
or any kind of procedure or subroutine.) I look at a fragment of code, understand
what it is doing, then extract it into its own function named after its purpose.

During my career, I’ve heard many arguments about when to enclose code in
its own function. Some of these guidelines were based on length: Functions
should be no larger than fit on a screen. Some were based on reuse: Any code

Chapter 6 A First Set of Refactorings106

ptg26261585

used more than once should be put in its own function, but code only used once
should be left inline. The argument that makes most sense to me, however, is
the separation between intention and implementation. If you have to spend effort
looking at a fragment of code and figuring out what it’s doing, then you should
extract it into a function and name the function after the “what.” Then, when you
read it again, the purpose of the function leaps right out at you, and most of the
time you won’t need to care about how the function fulfills its purpose (which
is the body of the function).

Once I accepted this principle, I developed a habit of writing very small
functions—typically, only a few lines long. To me, any function with more than
half-a-dozen lines of code starts to smell, and it’s not unusual for me to have
functions that are a single line of code. The fact that size isn’t important was
brought home to me by an example that Kent Beck showed me from the original
Smalltalk system. Smalltalk in those days ran on black-and-white systems. If you
wanted to highlight some text or graphics, you would reverse the video. Smalltalk’s
graphics class had a method for this called highlight, whose implementation was
just a call to the method reverse. The name of the method was longer than its
implementation—but that didn’t matter because there was a big distance between
the intention of the code and its implementation.

Some people are concerned about short functions because they worry about
the performance cost of a function call. When I was young, that was occasionally
a factor, but that’s very rare now. Optimizing compilers often work better with
shorter functions which can be cached more easily. As always, follow the general
guidelines on performance optimization.

Small functions like this only work if the names are good, so you need to pay
good attention to naming. This takes practice—but once you get good at it, this
approach can make code remarkably self-documenting.

Often, I see fragments of code in a larger function that start with a comment
to say what they do. The comment is often a good hint for the name of the
function when I extract that fragment.

Mechanics

Create a new function, and name it after the intent of the function (name
it by what it does, not by how it does it).

If the code I want to extract is very simple, such as a single function call, I still
extract it if the name of the new function will reveal the intent of the code in a
better way. If I can’t come up with a more meaningful name, that’s a sign that I
shouldn’t extract the code. However, I don’t have to come up with the best name
right away; sometimes a good name only appears as I work with the extraction.
It’s OK to extract a function, try to work with it, realize it isn’t helping, and then
inline it back again. As long as I’ve learned something, my time wasn’t wasted.

107Extract Function

ptg26261585

If the language supports nested functions, nest the extracted function inside the
source function. That will reduce the amount of out-of-scope variables to deal
with after the next couple of steps. I can always use Move Function (198) later.

Copy the extracted code from the source function into the new target
function.

Scan the extracted code for references to any variables that are local in scope
to the source function and will not be in scope for the extracted function.
Pass them as parameters.

If I extract into a nested function of the source function, I don’t run into these
problems.

Usually, these are local variables and parameters to the function. The most general
approach is to pass all such parameters in as arguments. There are usually no
difficulties for variables that are used but not assigned to.

If a variable is only used inside the extracted code but is declared outside, move
the declaration into the extracted code.

Any variables that are assigned to need more care if they are passed by value. If
there’s only one of them, I try to treat the extracted code as a query and assign
the result to the variable concerned.

Sometimes, I find that too many local variables are being assigned by the extracted
code. It’s better to abandon the extraction at this point. When this happens, I
consider other refactorings such as Split Variable (240) or Replace Temp with Query
(178) to simplify variable usage and revisit the extraction later.

Compile after all variables are dealt with.

Once all the variables are dealt with, it can be useful to compile if the language
environment does compile-time checks. Often, this will help find any variables
that haven’t been dealt with properly.

Replace the extracted code in the source function with a call to the target
function.

Test.

Look for other code that’s the same or similar to the code just extracted,
and consider using Replace Inline Code with Function Call (222) to call the new
function.

Some refactoring tools support this directly. Otherwise, it can be worth doing some
quick searches to see if duplicate code exists elsewhere.

Chapter 6 A First Set of Refactorings108

ptg26261585

Example: No Variables Out of Scope

In the simplest case, Extract Function is trivially easy.

 function printOwing(invoice) {
 let outstanding = 0;

 console.log("***********************");
 console.log("**** Customer Owes ****");
 console.log("***********************");

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 // record due date
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);

 //print details
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 console.log(`due: ${invoice.dueDate.toLocaleDateString()}`);
 }

You may be wondering what the Clock.today is about. It is a Clock Wrapper [mf-cw]—an object
that wraps calls to the system clock. I avoid putting direct calls to things like Date.now() in my
code, because it leads to nondeterministic tests and makes it difficult to reproduce error conditions
when diagnosing failures.

It’s easy to extract the code that prints the banner. I just cut, paste, and put in
a call:

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 // record due date
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);

109Extract Function

ptg26261585

 //print details
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 console.log(`due: ${invoice.dueDate.toLocaleDateString()}`);
 }
 function printBanner() {
 console.log("***********************");
 console.log("**** Customer Owes ****");
 console.log("***********************");
 }

Similarly, I can take the printing of details and extract that too:

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 // record due date
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);

 printDetails();

 function printDetails() {
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 console.log(`due: ${invoice.dueDate.toLocaleDateString()}`);
 }

This makes Extract Function seem like a trivially easy refactoring. But in many
situations, it turns out to be rather more tricky.

In the case above, I defined printDetails so it was nested inside printOwing. That
way it was able to access all the variables defined in printOwing. But that’s not an
option to me if I’m programming in a language that doesn’t allow nested functions.
Then I’m faced, essentially, with the problem of extracting the function to the
top level, which means I have to pay attention to any variables that exist only
in the scope of the source function. These are the arguments to the original
function and the temporary variables defined in the function.

Example: Using Local Variables

The easiest case with local variables is when they are used but not reassigned.
In this case, I can just pass them in as parameters. So if I have the following
function:

Chapter 6 A First Set of Refactorings110

ptg26261585

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 // record due date
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);

 //print details
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 console.log(`due: ${invoice.dueDate.toLocaleDateString()}`);
 }

I can extract the printing of details passing two parameters:

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 // record due date
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);

 printDetails(invoice, outstanding);
 }
 function printDetails(invoice, outstanding) {
 console.log(`name: ${invoice.customer}`);
 console.log(`amount: ${outstanding}`);
 console.log(`due: ${invoice.dueDate.toLocaleDateString()}`);
 }

The same is true if the local variable is a structure (such as an array, record,
or object) and I modify that structure. So, I can similarly extract the setting of
the due date:

111Extract Function

ptg26261585

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }
 function recordDueDate(invoice) {
 const today = Clock.today;
 invoice.dueDate = new Date(today.getFullYear(), today.getMonth(), today.getDate() + 30);
 }

Example: Reassigning a Local Variable

It’s the assignment to local variables that becomes complicated. In this case, we’re
only talking about temps. If I see an assignment to a parameter, I immediately
use Split Variable (240), which turns it into a temp.

For temps that are assigned to, there are two cases. The simpler case is where
the variable is a temporary variable used only within the extracted code. When
that happens, the variable just exists within the extracted code. Sometimes, par-
ticularly when variables are initialized at some distance before they are used, it’s
handy to use Slide Statements (223) to get all the variable manipulation together.

The more awkward case is where the variable is used outside the extracted
function. In that case, I need to return the new value. I can illustrate this with
the following familiar-looking function:

 function printOwing(invoice) {
 let outstanding = 0;

 printBanner();

 // calculate outstanding
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }

Chapter 6 A First Set of Refactorings112

ptg26261585

I’ve shown the previous refactorings all in one step, since they were straight-
forward, but this time I’ll take it one step at a time from the mechanics.

First, I’ll slide the declaration next to its use.

 function printOwing(invoice) {
 printBanner();

 // calculate outstanding
 let outstanding = 0;
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }

I then copy the code I want to extract into a target function.

 function printOwing(invoice) {
 printBanner();

 // calculate outstanding
 let outstanding = 0;
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }

 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }
 function calculateOutstanding(invoice) {
 let outstanding = 0;
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }
 return outstanding;
 }

Since I moved the declaration of outstanding into the extracted code, I don’t need
to pass it in as a parameter. The outstanding variable is the only one reassigned in
the extracted code, so I can return it.

My JavaScript environment doesn’t yield any value by compiling—indeed less
than I’m getting from the syntax analysis in my editor—so there’s no step to do
here. My next thing to do is to replace the original code with a call to the new
function. Since I’m returning the value, I need to store it in the original variable.

113Extract Function

ptg26261585

 function printOwing(invoice) {
 printBanner();
 let outstanding = calculateOutstanding(invoice);
 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }
 function calculateOutstanding(invoice) {
 let outstanding = 0;
 for (const o of invoice.orders) {
 outstanding += o.amount;
 }
 return outstanding;
 }

Before I consider myself done, I rename the return value to follow my usual
coding style.

 function printOwing(invoice) {
 printBanner();

const outstanding = calculateOutstanding(invoice);
 recordDueDate(invoice);
 printDetails(invoice, outstanding);
 }
 function calculateOutstanding(invoice) {
 let result = 0;
 for (const o of invoice.orders) {

result += o.amount;
 }
 return result;
 }

I also take the opportunity to change the original outstanding into a const.

At this point you may be wondering, “What happens if more than one variable
needs to be returned?”

Here, I have several options. Usually I prefer to pick different code to extract.
I like a function to return one value, so I would try to arrange for multiple func-
tions for the different values. If I really need to extract with multiple values, I
can form a record and return that—but usually I find it better to rework the
temporary variables instead. Here I like using Replace Temp with Query (178) and
Split Variable (240).

This raises an interesting question when I’m extracting functions that I expect
to then move to another context, such as top level. I prefer small steps, so my
instinct is to extract into a nested function first, then move that nested function
to its new context. But the tricky part of this is dealing with variables and I don’t
expose that difficulty until I do the move. This argues that even though I
can extract into a nested function, it makes sense to extract to at least the sibling
level of the source function first, so I can immediately tell if the extracted code
makes sense.

Chapter 6 A First Set of Refactorings114

ptg26261585

Inline Function
formerly: Inline Method
inverse of: Extract Function (106)

function getRating(driver) {
 return moreThanFiveLateDeliveries(driver) ? 2 : 1;
}

function moreThanFiveLateDeliveries(driver) {
 return driver.numberOfLateDeliveries > 5;
}

function getRating(driver) {
 return (driver.numberOfLateDeliveries > 5) ? 2 : 1;
}

Motivation

One of the themes of this book is using short functions named to show their in-
tent, because these functions lead to clearer and easier to read code. But some-
times, I do come across a function in which the body is as clear as the name. Or,
I refactor the body of the code into something that is just as clear as the name.
When this happens, I get rid of the function. Indirection can be helpful, but
needless indirection is irritating.

I also use Inline Function is when I have a group of functions that seem badly
factored. I can inline them all into one big function and then reextract the func-
tions the way I prefer.

I commonly use Inline Function when I see code that’s using too much
indirection—when it seems that every function does simple delegation to another
function, and I get lost in all the delegation. Some of this indirection may be
worthwhile, but not all of it. By inlining, I can flush out the useful ones and
eliminate the rest.

115Inline Function

ptg26261585

Mechanics

Check that this isn’t a polymorphic method.

If this is a method in a class, and has subclasses that override it, then I can’t
inline it.

Find all the callers of the function.

Replace each call with the function’s body.

Test after each replacement.

The entire inlining doesn’t have to be done all at once. If some parts of the inline
are tricky, they can be done gradually as opportunity permits.

Remove the function definition.

Written this way, Inline Function is simple. In general, it isn’t. I could write
pages on how to handle recursion, multiple return points, inlining a method into
another object when you don’t have accessors, and the like. The reason I don’t
is that if you encounter these complexities, you shouldn’t do this refactoring.

Example

In the simplest case, this refactoring is so easy it’s trivial. I start with

 function rating(aDriver) {
 return moreThanFiveLateDeliveries(aDriver) ? 2 : 1;
 }
 function moreThanFiveLateDeliveries(aDriver) {
 return aDriver.numberOfLateDeliveries > 5;
 }

I can just take the return expression of the called function and paste it into the
caller to replace the call.

 function rating(aDriver) {
 return aDriver.numberOfLateDeliveries > 5 ? 2 : 1;
 }

But it can be a little more involved than that, requiring me to do more work
to fit the code into its new home. Consider the case where I start with this slight
variation on the earlier initial code.

Chapter 6 A First Set of Refactorings116

ptg26261585

 function rating(aDriver) {
 return moreThanFiveLateDeliveries(aDriver) ? 2 : 1;
 }

 function moreThanFiveLateDeliveries(dvr) {
 return dvr.numberOfLateDeliveries > 5;
 }

Almost the same, but now the declared argument on moreThanFiveLateDeliveries is
different to the name of the passed-in argument. So I have to fit the code a little
when I do the inline.

 function rating(aDriver) {
 return aDriver.numberOfLateDeliveries > 5 ? 2 : 1;
 }

It can be even more involved than this. Consider this code:

 function reportLines(aCustomer) {
 const lines = [];
 gatherCustomerData(lines, aCustomer);
 return lines;
 }
 function gatherCustomerData(out, aCustomer) {
 out.push(["name", aCustomer.name]);
 out.push(["location", aCustomer.location]);
 }

Inlining gatherCustomerData into reportLines isn’t a simple cut and paste. It’s not too
complicated, and most times I would still do this in one go, with a bit of fitting.
But to be cautious, it may make sense to move one line at a time. So I’d start
with using Move Statements to Callers (217) on the first line (I’d do it the simple
way with a cut, paste, and fit).

 function reportLines(aCustomer) {
 const lines = [];
 lines.push(["name", aCustomer.name]);
 gatherCustomerData(lines, aCustomer);
 return lines;
 }
 function gatherCustomerData(out, aCustomer) {

out.push(["name", aCustomer.name]);
 out.push(["location", aCustomer.location]);
 }

I then continue with the other lines until I’m done.

117Inline Function

ptg26261585

 function reportLines(aCustomer) {
 const lines = [];
 lines.push(["name", aCustomer.name]);
 lines.push(["location", aCustomer.location]);
 return lines;
 }

The point here is to always be ready to take smaller steps. Most of the time,
with the small functions I normally write, I can do Inline Function in one go,
even if there is a bit of refitting to do. But if I run into complications, I go one
line at a time. Even with one line, things can get a bit awkward; then, I’ll use the
more elaborate mechanics for Move Statements to Callers (217) to break things
down even more. And if, feeling confident, I do something the quick way and
the tests break, I prefer to revert back to my last green code and repeat the
refactoring with smaller steps and a touch of chagrin.

Chapter 6 A First Set of Refactorings118

ptg26261585

Extract Variable
formerly: Introduce Explaining Variable
inverse of: Inline Variable (123)

return order.quantity * order.itemPrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(order.quantity * order.itemPrice * 0.1, 100);

const basePrice = order.quantity * order.itemPrice;
const quantityDiscount = Math.max(0, order.quantity - 500) * order.itemPrice * 0.05;
const shipping = Math.min(basePrice * 0.1, 100);
return basePrice - quantityDiscount + shipping;

Motivation

Expressions can become very complex and hard to read. In such situations, local
variables may help break the expression down into something more manageable.
In particular, they give me an ability to name a part of a more complex piece of
logic. This allows me to better understand the purpose of what’s happening.

Such variables are also handy for debugging, since they provide an easy hook
for a debugger or print statement to capture.

If I’m considering Extract Variable, it means I want to add a name to an expres-
sion in my code. Once I’ve decided I want to do that, I also think about the
context of that name. If it’s only meaningful within the function I’m working on,
then Extract Variable is a good choice—but if it makes sense in a broader context,
I’ll consider making the name available in that broader context, usually as a
function. If the name is available more widely, then other code can use that ex-
pression without having to repeat the expression, leading to less duplication and
a better statement of my intent.

The downside of promoting the name to a broader context is extra effort. If
it’s significantly more effort, I’m likely to leave it till later when I can use
Replace Temp with Query (178). But if it’s easy, I like to do it now so the name is
immediately available in the code. As a good example of this, if I’m working in
a class, then Extract Function (106) is very easy to do.

119Extract Variable

ptg26261585

Mechanics

Ensure that the expression you want to extract does not have side effects.

Declare an immutable variable. Set it to a copy of the expression you want
to name.

Replace the original expression with the new variable.

Test.

If the expression appears more than once, replace each occurrence with the
variable, testing after each replacement.

Example

I start with a simple calculation

 function price(order) {
 //price is base price - quantity discount + shipping
 return order.quantity * order.itemPrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(order.quantity * order.itemPrice * 0.1, 100);
 }

Simple as it may be, I can make it still easier to follow. First, I recognize that
the base price is the multiple of the quantity and the item price.

 function price(order) {
 //price is base price - quantity discount + shipping
 return order.quantity * order.itemPrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(order.quantity * order.itemPrice * 0.1, 100);
 }

Once that understanding is in my head, I put it in the code by creating and
naming a variable for it.

 function price(order) {
 //price is base price - quantity discount + shipping
 const basePrice = order.quantity * order.itemPrice;
 return order.quantity * order.itemPrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(order.quantity * order.itemPrice * 0.1, 100);
 }

Of course, just declaring and initializing a variable doesn’t do anything; I also
have to use it, so I replace the expression that I used as its source.

Chapter 6 A First Set of Refactorings120

ptg26261585

 function price(order) {
 //price is base price - quantity discount + shipping
 const basePrice = order.quantity * order.itemPrice;
 return basePrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(order.quantity * order.itemPrice * 0.1, 100);
 }

That same expression is used later on, so I can replace it with the variable
there too.

 function price(order) {
 //price is base price - quantity discount + shipping
 const basePrice = order.quantity * order.itemPrice;
 return basePrice -
 Math.max(0, order.quantity - 500) * order.itemPrice * 0.05 +
 Math.min(basePrice * 0.1, 100);
 }

The next line is the quantity discount, so I can extract that too.

 function price(order) {
 //price is base price - quantity discount + shipping
 const basePrice = order.quantity * order.itemPrice;
 const quantityDiscount = Math.max(0, order.quantity - 500) * order.itemPrice * 0.05;
 return basePrice -

quantityDiscount +
 Math.min(basePrice * 0.1, 100);
 }

Finally, I finish with the shipping. As I do that, I can remove the comment,
too, because it no longer says anything the code doesn’t say.

 function price(order) {
 const basePrice = order.quantity * order.itemPrice;
 const quantityDiscount = Math.max(0, order.quantity - 500) * order.itemPrice * 0.05;
 const shipping = Math.min(basePrice * 0.1, 100);
 return basePrice - quantityDiscount + shipping;
 }

Example: With a Class

Here’s the same code, but this time in the context of a class:

 class Order {
 constructor(aRecord) {
 this._data = aRecord;
 }

121Extract Variable

ptg26261585

 get quantity() {return this._data.quantity;}
 get itemPrice() {return this._data.itemPrice;}

 get price() {
 return this.quantity * this.itemPrice -
 Math.max(0, this.quantity - 500) * this.itemPrice * 0.05 +
 Math.min(this.quantity * this.itemPrice * 0.1, 100);
 }
 }

In this case, I want to extract the same names, but I realize that the names
apply to the Order as a whole, not just the calculation of the price. Since they apply
to the whole order, I’m inclined to extract the names as methods rather than
variables.

 class Order {
 constructor(aRecord) {
 this._data = aRecord;
 }
 get quantity() {return this._data.quantity;}
 get itemPrice() {return this._data.itemPrice;}

 get price() {
 return this.basePrice - this.quantityDiscount + this.shipping;
 }
 get basePrice() {return this.quantity * this.itemPrice;}
 get quantityDiscount() {return Math.max(0, this.quantity - 500) * this.itemPrice * 0.05;}
 get shipping() {return Math.min(this.basePrice * 0.1, 100);}
 }

This is one of the great benefits of objects—they give you a reasonable amount
of context for logic to share other bits of logic and data. For something as simple
as this, it doesn’t matter so much, but with a larger class it becomes very useful
to call out common hunks of behavior as their own abstractions with their own
names to refer to them whenever I’m working with the object.

Chapter 6 A First Set of Refactorings122

ptg26261585

Inline Variable
formerly: Inline Temp
inverse of: Extract Variable (119)

let basePrice = anOrder.basePrice;
return (basePrice > 1000);

return anOrder.basePrice > 1000;

Motivation

Variables provide names for expressions within a function, and as such they are
usually a Good Thing. But sometimes, the name doesn’t really communicate more
than the expression itself. At other times, you may find that a variable gets in
the way of refactoring the neighboring code. In these cases, it can be useful to
inline the variable.

Mechanics

Check that the right-hand side of the assignment is free of side effects.

If the variable isn’t already declared immutable, do so and test.

This checks that it’s only assigned to once.

Find the first reference to the variable and replace it with the right-hand
side of the assignment.

Test.

Repeat replacing references to the variable until you’ve replaced all of them.

Remove the declaration and assignment of the variable.

Test.

123Inline Variable

ptg26261585

Change Function Declaration
aka: Rename Function
formerly: Rename Method
formerly: Add Parameter
formerly: Remove Parameter
aka: Change Signature

function circum(radius) {...}

function circumference(radius) {...}

Motivation

Functions represent the primary way we break a program down into parts. Func-
tion declarations represent how these parts fit together—effectively, they represent
the joints in our software systems. And, as with any construction, much depends
on those joints. Good joints allow me to add new parts to the system easily, but
bad ones are a constant source of difficulty, making it harder to figure out what
the software does and how to modify it as my needs change. Fortunately, software,
being soft, allows me to change these joints, providing I do it carefully.

The most important element of such a joint is the name of the function. A
good name allows me to understand what the function does when I see it called,
without seeing the code that defines its implementation. However, coming up with
good names is hard, and I rarely get my names right the first time. When I find
a name that’s confused me, I’m tempted to leave it—after all, it’s only a name.
This is the work of the evil demon Obfuscatis; for the sake of my program’s soul
I must never listen to him. If I see a function with the wrong name, it is imperative
that I change it as soon as I understand what a better name could be. That way,

Chapter 6 A First Set of Refactorings124

ptg26261585

the next time I’m looking at this code, I don’t have to figure out again what’s
going on. (Often, a good way to improve a name is to write a comment to describe
the function’s purpose, then turn that comment into a name.)

Similar logic applies to a function’s parameters. The parameters of a function
dictate how a function fits in with the rest of its world. Parameters set the context
in which I can use a function. If I have a function to format a person’s telephone
number, and that function takes a person as its argument, then I can’t use it to
format a company’s telephone number. If I replace the person parameter with
the telephone number itself, then the formatting code is more widely useful.

Apart from increasing a function’s range of applicability, I can also remove
some coupling, changing what modules need to connect to others. Telephone
formatting logic may sit in a module that has no knowledge about people. Reduc-
ing how much modules need to know about each other helps reduce how much
I need to put into my brain when I change something—and my brain isn’t as big
as it used to be (that doesn’t say anything about the size of its container, though).

Choosing the right parameters isn’t something that adheres to simple rules. I
may have a simple function for determining if a payment is overdue, by looking
at if it’s older than 30 days. Should the parameter to this function be the payment
object, or the due date of the payment? Using the payment couples the function
to the interface of the payment object. But if I use the payment, I can easily access
other properties of the payment, should the logic evolve, without having to change
every bit of code that calls this function—essentially, increasing the encapsulation
of the function.

The only right answer to this puzzle is that there is no right answer, especially
over time. So I find it’s essential to be familiar with Change Function Declaration
so the code can evolve with my understanding of what the best joints in the code
need to be.

Usually, I only use the main name of a refactoring when I refer to it from
elsewhere in this book. However, since renaming is such a significant use case
for Change Function Declaration, if I’m just renaming something, I’ll refer to this
refactoring as Rename Function to make it clearer what I’m doing. Whether I’m
merely renaming or manipulating the parameters, I use the same mechanics.

Mechanics

In most of the refactorings in this book, I present only a single set of mechanics.
This isn’t because there is only one set that will do the job but because, usually,
one set of mechanics will work reasonably well for most cases. Change Function
Declaration, however, is an exception. The simple mechanics are often effective,
but there are plenty of cases when a more gradual migration makes more sense.
So, with this refactoring, I look at the change and ask myself if I think I can
change the declaration and all its callers easily in one go. If so, I follow the simple
mechanics. The migration-style mechanics allow me to change the callers more
gradually—which is important if I have lots of them, they are awkward to get

125Change Function Declaration

ptg26261585

to, the function is a polymorphic method, or I have a more complicated change to
the declaration.

Simple Mechanics

If you’re removing a parameter, ensure it isn’t referenced in the body of the
function.

Change the method declaration to the desired declaration.

Find all references to the old method declaration, update them to the
new one.

Test.

It’s often best to separate changes, so if you want to both change the name
and add a parameter, do these as separate steps. (In any case, if you run into
trouble, revert and use the migration mechanics instead.)

Migration Mechanics

If necessary, refactor the body of the function to make it easy to do the
following extraction step.

Use Extract Function (106) on the function body to create the new function.

If the new function will have the same name as the old one, give the new function
a temporary name that’s easy to search for.

If the extracted function needs additional parameters, use the simple
mechanics to add them.

Test.

Apply Inline Function (115) to the old function.

If you used a temporary name, use Change Function Declaration (124) again
to restore it to the original name.

Test.

If you’re changing a method on a class with polymorphism, you’ll need to add
indirection for each binding. If the method is polymorphic within a single class
hierarchy, you only need the forwarding method on the superclass. If the poly-
morphism has no superclass link, then you’ll need forwarding methods on each
implementation class.

If you are refactoring a published API, you can pause the refactoring once
you’ve created the new function. During this pause, deprecate the original function
and wait for clients to change to the new function. The original function declara-

Chapter 6 A First Set of Refactorings126

ptg26261585

tion can be removed when (and if) you’re confident all the clients of the old
function have migrated to the new one.

Example: Renaming a Function (Simple Mechanics)

Consider this function with an overly abbreved name:

function circum(radius) {
 return 2 * Math.PI * radius;
}

I want to change that to something more sensible. I begin by changing the
declaration:

function circumference(radius) {
 return 2 * Math.PI * radius;
}

I then find all the callers of circum and change the name to circumference.
Different language environments have an impact on how easy it is to find all

the references to the old function. Static typing and a good IDE provide the best
experience, usually allowing me to rename functions automatically with little
chance of error. Without static typing, this can be more involved; even good
searching tools will then have a lot of false positives.

I use the same approach for adding or removing parameters: find all the callers,
change the declaration, and change the callers. It’s often better to do these as
separate steps—so, if I’m both renaming the function and adding a parameter, I
first do the rename, test, then add the parameter, and test again.

A disadvantage of this simple way of doing the refactoring is that I have to do
all the callers and the declaration (or all of them, if polymorphic) at once. If there
are only a few of them, or if I have decent automated refactoring tools, this is
reasonable. But if there’s a lot, it can get tricky. Another problem is when the
names aren’t unique—e.g., I want to rename the a changeAddress method on a person
class but the same method, which I don’t want to change, exists on an insurance
agreement class. The more complex the change is, the less I want to do it in one
go like this. When this kind of problem arises, I use the migration mechanics
instead. Similarly, if I use simple mechanics and something goes wrong, I’ll revert
the code to the last known good state and try again using migration mechanics.

Example: Renaming a Function (Migration Mechanics)

Again, I have this function with its overly abbreved name:

 function circum(radius) {
 return 2 * Math.PI * radius;
 }

127Change Function Declaration

ptg26261585

To do this refactoring with migration mechanics, I begin by applying Extract
Function (106) to the entire function body.

 function circum(radius) {
 return circumference(radius);
 }
 function circumference(radius) {
 return 2 * Math.PI * radius;
 }

I test that, then apply Inline Function (115) to the old functions. I find all the
calls of the old function and replace each one with a call of the new one. I can
test after each change, which allows me to do them one at a time. Once I’ve got
them all, I remove the old function.

With most refactorings, I’m changing code that I can modify, but this refactoring
can be handy with a published API—that is, one used by code that I’m unable
to change myself. I can pause the refactoring after creating circumference and, if
possible, mark circum as deprecated. I will then wait for callers to change to use
circumference; once they do, I can delete circum. Even if I’m never able to reach the
happy point of deleting circum, at least I have a better name for new code.

Example: Adding a Parameter

In some software, to manage a library of books, I have a book class which has
the ability to take a reservation for a customer.

class Book…
 addReservation(customer) {
 this._reservations.push(customer);
 }

I need to support a priority queue for reservations. Thus, I need an extra pa-
rameter on addReservation to indicate whether the reservation should go in the
usual queue or the high-priority queue. If I can easily find and change all
the callers, then I can just go ahead with the change—but if not, I can
use the migration approach, which I’ll show here.

I begin by using Extract Function (106) on the body of addReservation to create the
new function. Although it will eventually be called addReservation, the new and old
functions can’t coexist with the same name. So I use a temporary name that will
be easy to search for later.

class Book…
 addReservation(customer) {
 this.zz_addReservation(customer);
 }

Chapter 6 A First Set of Refactorings128

ptg26261585

zz_addReservation(customer) {
 this._reservations.push(customer);
 }

I then add the parameter to the new declaration and its call (in effect, using
the simple mechanics).

class Book…
 addReservation(customer) {
 this.zz_addReservation(customer, false);
 }

 zz_addReservation(customer, isPriority) {
 this._reservations.push(customer);
 }

When I use JavaScript, before I change any of the callers, I like to apply Introduce
Assertion (302) to check the new parameter is used by the caller.

class Book…
 zz_addReservation(customer, isPriority) {
 assert(isPriority === true || isPriority === false);
 this._reservations.push(customer);
 }

Now, when I change the callers, if I make a mistake and leave off the new pa-
rameter, this assertion will help me catch the mistake. And I know from long
experience there are few more mistake-prone programmers than myself.

Now, I can start changing the callers by using Inline Function (115) on the
original function. This allows me to change one caller at a time.

I then rename the new function back to the original. Usually, the simple me-
chanics work fine for this, but I can also use the migration approach if I need to.

Example: Changing a Parameter to One of Its Properties

The examples so far are simple changes of a name and adding a new parameter,
but with the migration mechanics, this refactoring can handle more complicated
cases quite neatly. Here’s an example that is a bit more involved.

I have a function which determines if a customer is based in New England.

function inNewEngland(aCustomer) {
 return ["MA", "CT", "ME", "VT", "NH", "RI"].includes(aCustomer.address.state);
}

Here is one of its callers:

caller…
 const newEnglanders = someCustomers.filter(c => inNewEngland(c));

129Change Function Declaration

ptg26261585

inNewEngland only uses the customer’s home state to determine if it’s in New
England. I’d prefer to refactor inNewEngland so that it takes a state code as a param-
eter, making it usable in more contexts by removing the dependency on the
customer.

With Change Function Declaration, my usual first move is to apply Extract
Function (106), but in this case I can make it easier by first refactoring the function
body a little. I use Extract Variable (119) on my desired new parameter.

function inNewEngland(aCustomer) {
 const stateCode = aCustomer.address.state;
 return ["MA", "CT", "ME", "VT", "NH", "RI"].includes(stateCode);
}

Now I use Extract Function (106) to create that new function.

function inNewEngland(aCustomer) {
 const stateCode = aCustomer.address.state;
 return xxNEWinNewEngland(stateCode);
}

function xxNEWinNewEngland(stateCode) {
 return ["MA", "CT", "ME", "VT", "NH", "RI"].includes(stateCode);
}

I give the function a name that’s easy to automatically replace to turn into the
original name later. (You can tell I don’t have a standard for these temporary
names.)

I apply Inline Variable (123) on the input parameter in the original function.

function inNewEngland(aCustomer) {
 return xxNEWinNewEngland(aCustomer.address.state);
}

I use Inline Function (115) to fold the old function into its callers, effectively
replacing the call to the old function with a call to the new one. I can do these
one at a time.

caller…
 const newEnglanders = someCustomers.filter(c => xxNEWinNewEngland(c.address.state));

Once I’ve inlined the old function into every caller, I use Change Function
Declaration again to change the name of the new function to that of the original.

caller…
 const newEnglanders = someCustomers.filter(c => inNewEngland(c.address.state));

top level…
 function inNewEngland(stateCode) {
 return ["MA", "CT", "ME", "VT", "NH", "RI"].includes(stateCode);
 }

Chapter 6 A First Set of Refactorings130

ptg26261585

Automated refactoring tools make the migration mechanics both less useful
and more effective. They make it less useful because they handle even complicated
renames and parameter changes safer, so I don’t have to use the migration ap-
proach as often as I do without that support. However, in cases like this example,
where the tools can’t do the whole refactoring, they still make it much easier as
the key moves of extract and inline can be done more quickly and safely
with the tool.

131Change Function Declaration

ptg26261585

Encapsulate Variable
formerly: Self-Encapsulate Field
formerly: Encapsulate Field

let defaultOwner = {firstName: "Martin", lastName: "Fowler"};

let defaultOwnerData = {firstName: "Martin", lastName: "Fowler"};
export function defaultOwner() {return defaultOwnerData;}
export function setDefaultOwner(arg) {defaultOwnerData = arg;}

Motivation

Refactoring is all about manipulating the elements of our programs. Data is more
awkward to manipulate than functions. Since using a function usually means
calling it, I can easily rename or move a function while keeping the old function
intact as a forwarding function (so my old code calls the old function, which calls
the new function). I’ll usually not keep this forwarding function around for long,
but it does simplify the refactoring.

Data is more awkward because I can’t do that. If I move data around, I have
to change all the references to the data in a single cycle to keep the code working.
For data with a very small scope of access, such as a temporary variable in a
small function, this isn’t a problem. But as the scope grows, so does the difficulty,
which is why global data is such a pain.

So if I want to move widely accessed data, often the best approach is to first
encapsulate it by routing all its access through functions. That way, I turn the
difficult task of reorganizing data into the simpler task of reorganizing functions.

Encapsulating data is valuable for other things too. It provides a clear point to
monitor changes and use of the data; I can easily add validation or consequential
logic on the updates. It is my habit to make all mutable data encapsulated like
this and only accessed through functions if its scope is greater than a single
function. The greater the scope of the data, the more important it is to encapsulate.

Chapter 6 A First Set of Refactorings132

ptg26261585

My approach with legacy code is that whenever I need to change or add a new
reference to such a variable, I should take the opportunity to encapsulate it. That
way I prevent the increase of coupling to commonly used data.

This principle is why the object-oriented approach puts so much emphasis on
keeping an object’s data private. Whenever I see a public field, I consider using
Encapsulate Variable (in that case often called Encapsulate Field) to reduce its
visibility. Some go further and argue that even internal references to fields within
a class should go through accessor functions—an approach known as self--
encapsulation. On the whole, I find self-encapsulation excessive—if a class is so
big that I need to self-encapsulate its fields, it needs to be broken up anyway.
But self-encapsulating a field is a useful step before splitting a class.

Keeping data encapsulated is much less important for immutable data. When
the data doesn’t change, I don’t need a place to put in validation or other logic
hooks before updates. I can also freely copy the data rather than move it—so I
don’t have to change references from old locations, nor do I worry about sections
of code getting stale data. Immutability is a powerful preservative.

Mechanics

Create encapsulating functions to access and update the variable.

Run static checks.

For each reference to the variable, replace with a call to the appropriate
encapsulating function. Test after each replacement.

Restrict the visibility of the variable.

Sometimes it’s not possible to prevent access to the variable. If so, it may be
useful to detect any remaining references by renaming the variable and testing.

Test.

If the value of the variable is a record, consider Encapsulate Record (162).

Example

Consider some useful data held in a global variable.

 let defaultOwner = {firstName: "Martin", lastName: "Fowler"};

Like any data, it’s referenced with code like this:

 spaceship.owner = defaultOwner;

and updated like this:

 defaultOwner = {firstName: "Rebecca", lastName: "Parsons"};

133Encapsulate Variable

ptg26261585

To do a basic encapsulation on this, I start by defining functions to read and
write the data.

 function getDefaultOwner() {return defaultOwner;}
 function setDefaultOwner(arg) {defaultOwner = arg;}

I then start working on references to defaultOwner. When I see a reference, I replace
it with a call to the getting function.

 spaceship.owner = getDefaultOwner();

When I see an assignment, I replace it with the setting function.

setDefaultOwner({firstName: "Rebecca", lastName: "Parsons"});

I test after each replacement.
Once I’m done with all the references, I restrict the visibility of the variable.

This both checks that there aren’t any references that I’ve missed, and ensures
that future changes to the code won’t access the variable directly. I can do that
in JavaScript by moving both the variable and the accessor methods to their own
file and only exporting the accessor methods.

defaultOwner.js…
 let defaultOwner = {firstName: "Martin", lastName: "Fowler"};
 export function getDefaultOwner() {return defaultOwner;}
 export function setDefaultOwner(arg) {defaultOwner = arg;}

If I’m in a situation where I cannot restrict the access to a variable, it may be
useful to rename the variable and retest. That won’t prevent future direct
access, but naming the variable something meaningful and awkward such as
__privateOnly_defaultOwner may help.

I don’t like the use of get prefixes on getters, so I’ll rename to remove it.

defaultOwner.js…
 let defaultOwnerData = {firstName: "Martin", lastName: "Fowler"};
 export function getdefaultOwner() {return defaultOwnerData;}
 export function setDefaultOwner(arg) {defaultOwnerData = arg;}

A common convention in JavaScript is to name a getting function and setting function
the same and differentiate them due the presence of an argument. I call this practice
Overloaded Getter Setter [mf-ogs] and strongly dislike it. So, even though I don’t like
the get prefix, I will keep the set prefix.

Encapsulating the Value
The basic refactoring I’ve outlined here encapsulates a reference to some data
structure, allowing me to control its access and reassignment. But it doesn’t
control changes to that structure.

Chapter 6 A First Set of Refactorings134

ptg26261585

 const owner1 = defaultOwner();
 assert.equal("Fowler", owner1.lastName, "when set");
 const owner2 = defaultOwner();
 owner2.lastName = "Parsons";
 assert.equal("Parsons", owner1.lastName, "after change owner2"); // is this ok?

The basic refactoring encapsulates the reference to the data item. In many
cases, this is all I want to do for the moment. But I often want to take the encap-
sulation deeper to control not just changes to the variable but also to its contents.

For this, I have a couple of options. The simplest one is to prevent any changes
to the value. My favorite way to handle this is by modifying the getting function to
return a copy of the data.

defaultOwner.js…
 let defaultOwnerData = {firstName: "Martin", lastName: "Fowler"};
 export function defaultOwner() {return Object.assign({}, defaultOwnerData);}
 export function setDefaultOwner(arg) {defaultOwnerData = arg;}

I use this approach particularly often with lists. If I return a copy of the data,
any clients using it can change it, but that change isn’t reflected in the shared
data. I have to be careful with using copies, however: Some code may expect to
change shared data. If that’s the case, I’m relying on my tests to detect a problem.
An alternative is to prevent changes—and a good way of doing that is Encapsulate
Record (162).

 let defaultOwnerData = {firstName: "Martin", lastName: "Fowler"};
 export function defaultOwner() {return new Person(defaultOwnerData);}
 export function setDefaultOwner(arg) {defaultOwnerData = arg;}

 class Person {
 constructor(data) {
 this._lastName = data.lastName;
 this._firstName = data.firstName
 }
 get lastName() {return this._lastName;}
 get firstName() {return this._firstName;}
 // and so on for other properties

Now, any attempt to reassign the properties of the default owner will cause
an error. Different languages have different techniques to detect or prevent
changes like this, so depending on the language I’d consider other options.

Detecting and preventing changes like this is often worthwhile as a temporary
measure. I can either remove the changes, or provide suitable mutating functions.
Then, once they are all dealt with, I can modify the getting method to return
a copy.

So far I’ve talked about copying on getting data, but it may be worthwhile to
make a copy in the setter too. That will depend on where the data comes from
and whether I need to maintain a link to reflect any changes in that original data.

135Encapsulate Variable

ptg26261585

If I don’t need such a link, a copy prevents accidents due to changes on that
source data. Taking a copy may be superfluous most of the time, but copies in
these cases usually have a negligible effect on performance; on the other hand,
if I don’t do them, there is a risk of a long and difficult bout of debugging in the
future.

Remember that the copying above, and the class wrapper, both only work one
level deep in the record structure. Going deeper requires more levels of copies
or object wrapping.

As you can see, encapsulating data is valuable, but often not straightforward.
Exactly what to encapsulate—and how to do it—depends on the way the data is
being used and the changes I have in mind. But the more widely it’s used, the
more it’s worth my attention to encapsulate properly.

Chapter 6 A First Set of Refactorings136

ptg26261585

Rename Variable

let a = height * width;

let area = height * width;

Motivation

Naming things well is the heart of clear programming. Variables can do a lot to
explain what I’m up to—if I name them well. But I frequently get my names
wrong—sometimes because I’m not thinking carefully enough, sometimes because
my understanding of the problem improves as I learn more, and sometimes
because the program’s purpose changes as my users’ needs change.

Even more than most program elements, the importance of a name depends
on how widely it’s used. A variable used in a one-line lambda expression is
usually easy to follow—I often use a single letter in that case since the variable’s
purpose is clear from its context. Parameters for short functions can often be
terse for the same reason, although in a dynamically typed language like
JavaScript, I do like to put the type into the name (hence parameter names
like aCustomer).

Persistent fields that last beyond a single function invocation require more
careful naming. This is where I’m likely to put most of my attention.

Mechanics

If the variable is used widely, consider Encapsulate Variable (132).

Find all references to the variable, and change every one.

If there are references from another code base, the variable is a published variable,
and you cannot do this refactoring.

If the variable does not change, you can copy it to one with the new name, then
change gradually, testing after each change.

Test.

137Rename Variable

ptg26261585

Example

The simplest case for renaming a variable is when it’s local to a single function:
a temp or argument. It’s too trivial for even an example: I just find each reference
and change it. After I’m done, I test to ensure I didn’t mess up.

Problems occur when the variable has a wider scope than just a single function.
There may be a lot of references all over the code base:

 let tpHd = "untitled";

Some references access the variable:

 result += `<h1>${tpHd}</h1>`;

Others update it:

 tpHd = obj['articleTitle'];

My usual response to this is apply Encapsulate Variable (132).

 result += `<h1>${title()}</h1>`;

setTitle(obj['articleTitle']);

 function title() {return tpHd;}
 function setTitle(arg) {tpHd = arg;}

At this point, I can rename the variable.

 let _title = "untitled";

 function title() {return _title;}
 function setTitle(arg) {_title = arg;}

I could continue by inlining the wrapping functions so all callers are using the
variable directly. But I’d rarely want to do this. If the variable is used widely
enough that I feel the need to encapsulate it in order to change its name, it’s
worth keeping it encapsulated behind functions for the future.

In cases where I was going to inline, I’d call the getting function getTitle and not use
an underscore for the variable name when I rename it.

Renaming a Constant
If I’m renaming a constant (or something that acts like a constant to clients) I
can avoid encapsulation, and still do the rename gradually, by copying. If the
original declaration looks like this:

 const cpyNm = "Acme Gooseberries";

I can begin the renaming by making a copy:

Chapter 6 A First Set of Refactorings138

ptg26261585

 const companyName = "Acme Gooseberries";
 const cpyNm = companyName;

With the copy, I can gradually change references from the old name to the
new name. When I’m done, I remove the copy. I prefer to declare the new name
and copy to the old name if it makes it a tad easier to remove the old name and
put it back again should a test fail.

This works for constants as well as for variables that are read-only to clients
(such as an exported variable in JavaScript).

139Rename Variable

ptg26261585

Introduce Parameter Object

function amountInvoiced(startDate, endDate) {...}
function amountReceived(startDate, endDate) {...}
function amountOverdue(startDate, endDate) {...}

function amountInvoiced(aDateRange) {...}
function amountReceived(aDateRange) {...}
function amountOverdue(aDateRange) {...}

Motivation

I often see groups of data items that regularly travel together, appearing in
function after function. Such a group is a data clump, and I like to replace it with
a single data structure.

Grouping data into a structure is valuable because it makes explicit the rela-
tionship between the data items. It reduces the size of parameter lists for any
function that uses the new structure. It helps consistency since all functions that
use the structure will use the same names to get at its elements.

But the real power of this refactoring is how it enables deeper changes to the
code. When I identify these new structures, I can reorient the behavior of
the program to use these structures. I will create functions that capture the
common behavior over this data—either as a set of common functions or as a
class that combines the data structure with these functions. This process can
change the conceptual picture of the code, raising these structures as new abstrac-
tions that can greatly simplify my understanding of the domain. When this works,
it can have surprisingly powerful effects—but none of this is possible unless I use
Introduce Parameter Object to begin the process.

Chapter 6 A First Set of Refactorings140

ptg26261585

Mechanics

If there isn’t a suitable structure already, create one.

I prefer to use a class, as that makes it easier to group behavior later on. I usually
like to ensure these structures are value objects [mf-vo].

Test.

Use Change Function Declaration (124) to add a parameter for the new
structure.

Test.

Adjust each caller to pass in the correct instance of the new structure. Test
after each one.

For each element of the new structure, replace the use of the original
parameter with the element of the structure. Remove the parameter. Test.

Example

I’ll begin with some code that looks at a set of temperature readings and deter-
mines whether any of them fall outside of an operating range. Here’s what the
data looks like for the readings:

 const station = { name: "ZB1",
 readings: [
 {temp: 47, time: "2016-11-10 09:10"},
 {temp: 53, time: "2016-11-10 09:20"},
 {temp: 58, time: "2016-11-10 09:30"},
 {temp: 53, time: "2016-11-10 09:40"},
 {temp: 51, time: "2016-11-10 09:50"},
]
 };

I have a function to find the readings that are outside a temperature range.

 function readingsOutsideRange(station, min, max) {
 return station.readings
 .filter(r => r.temp < min || r.temp > max);
 }

It might be called from some code like this:

caller
 alerts = readingsOutsideRange(station,
 operatingPlan.temperatureFloor,
 operatingPlan.temperatureCeiling);

141Introduce Parameter Object

ptg26261585

Notice how the calling code pulls the two data items as a pair from another
object and passes the pair into readingsOutsideRange. The operating plan uses different
names to indicate the start and end of the range compared to readingsOutsideRange.
A range like this is a common case where two separate data items are better
combined into a single object. I’ll begin by declaring a class for the combined data.

 class NumberRange {
 constructor(min, max) {
 this._data = {min: min, max: max};
 }
 get min() {return this._data.min;}
 get max() {return this._data.max;}
 }

I declare a class, rather than just using a basic JavaScript object, because I
usually find this refactoring to be a first step to moving behavior into the newly
created object. Since a class makes sense for this, I go right ahead and use one
directly. I also don’t provide any update methods for the new class, as I’ll probably
make this a Value Object [mf-vo]. Most times I do this refactoring, I create value
objects.

I then use Change Function Declaration (124) to add the new object as a parameter
to readingsOutsideRange.

 function readingsOutsideRange(station, min, max, range) {
 return station.readings
 .filter(r => r.temp < min || r.temp > max);
 }

In JavaScript, I can leave the caller as is, but in other languages I’d have to add
a null for the new parameter which would look something like this:

caller
 alerts = readingsOutsideRange(station,
 operatingPlan.temperatureFloor,
 operatingPlan.temperatureCeiling,

null);

At this point I haven’t changed any behavior, and tests should still pass. I then
go to each caller and adjust it to pass in the correct date range.

caller
 const range = new NumberRange(operatingPlan.temperatureFloor, operatingPlan.temperatureCeiling);
 alerts = readingsOutsideRange(station,
 operatingPlan.temperatureFloor,
 operatingPlan.temperatureCeiling,

range);

I still haven’t altered any behavior yet, as the parameter isn’t used. All tests
should still work.

Chapter 6 A First Set of Refactorings142

ptg26261585

Now I can start replacing the usage of the parameters. I’ll start with the
maximum.

 function readingsOutsideRange(station, min, max, range) {
 return station.readings
 .filter(r => r.temp < min || r.temp > range.max);
 }

caller
 const range = new NumberRange(operatingPlan.temperatureFloor, operatingPlan.temperatureCeiling);
 alerts = readingsOutsideRange(station,
 operatingPlan.temperatureFloor,

operatingPlan.temperatureCeiling,
 range);

I can test at this point, then remove the other parameter.

 function readingsOutsideRange(station, min, range) {
 return station.readings
 .filter(r => r.temp < range.min || r.temp > range.max);
 }

caller
 const range = new NumberRange(operatingPlan.temperatureFloor, operatingPlan.temperatureCeiling);
 alerts = readingsOutsideRange(station,

operatingPlan.temperatureFloor,
 range);

That completes this refactoring. However, replacing a clump of parameters
with a real object is just the setup for the really good stuff. The great benefits of
making a class like this is that I can then move behavior into the new class. In
this case, I’d add a method for range that tests if a value falls within the range.

function readingsOutsideRange(station, range) {
 return station.readings
 .filter(r => !range.contains(r.temp));
}

class NumberRange…
 contains(arg) {return (arg >= this.min && arg <= this.max);}

This is a first step to creating a range [mf-range] that can take on a lot of useful
behavior. Once I’ve identified the need for a range in my code, I can be constantly
on the lookout for other cases where I see a max/min pair of numbers and replace
them with a range. (One immediate possibility is the operating plan, replacing
temperatureFloor and temperatureCeiling with a temperatureRange.) As I look at how these
pairs are used, I can move more useful behavior into the range class, simplifying
its usage across the code base. One of the first things I may add is a value-based
equality method to make it a true value object.

143Introduce Parameter Object

ptg26261585

Combine Functions into Class

function base(aReading) {...}
function taxableCharge(aReading) {...}
function calculateBaseCharge(aReading) {...}

class Reading {
 base() {...}
 taxableCharge() {...}
 calculateBaseCharge() {...}
}

Motivation

Classes are a fundamental construct in most modern programming languages.
They bind together data and functions into a shared environment, exposing some
of that data and function to other program elements for collaboration. They are
the primary construct in object-oriented languages, but are also useful with other
approaches too.

When I see a group of functions that operate closely together on a common
body of data (usually passed as arguments to the function call), I see an opportu-
nity to form a class. Using a class makes the common environment that these
functions share more explicit, allows me to simplify function calls inside the object
by removing many of the arguments, and provides a reference to pass such an
object to other parts of the system.

In addition to organizing already formed functions, this refactoring also provides
a good opportunity to identify other bits of computation and refactor them into
methods on the new class.

Another way of organizing functions together is Combine Functions into Transform
(149). Which one to use depends more on the broader context of the program.
One significant advantage of using a class is that it allows clients to mutate the
core data of the object, and the derivations remain consistent.

Chapter 6 A First Set of Refactorings144

ptg26261585

As well as a class, functions like this can also be combined into a nested
function. Usually I prefer a class to a nested function, as it can be difficult to
test functions nested within another. Classes are also necessary when there is
more than one function in the group that I want to expose to collaborators.

Languages that don’t have classes as a first-class element, but do have
first-class functions, often use the Function As Object [mf-fao] to provide this
capability.

Mechanics

Apply Encapsulate Record (162) to the common data record that the functions
share.

If the data that is common between the functions isn’t already grouped into a
record structure, use Introduce Parameter Object (140) to create a record to group
it together.

Take each function that uses the common record and use Move Function
(198) to move it into the new class.

Any arguments to the function call that are members can be removed from the
argument list.

Each bit of logic that manipulates the data can be extracted with Extract
Function (106) and then moved into the new class.

Example

I grew up in England, a country renowned for its love of Tea. (Personally, I don’t
like most tea they serve in England, but have since acquired a taste for Chinese
and Japanese teas.) So my author’s fantasy conjures up a state utility for providing
tea to the population. Every month they read the tea meters, to get a record
like this:

reading = {customer: "ivan", quantity: 10, month: 5, year: 2017};

I look through the code that processes these records, and I see lots of places
where similar calculations are done on the data. So I find a spot that calculates
the base charge:

client 1…
 const aReading = acquireReading();
 const baseCharge = baseRate(aReading.month, aReading.year) * aReading.quantity;

Being England, everything essential must be taxed, so it is with tea. But the
rules allow at least an essential level of tea to be free of taxation.

145Combine Functions into Class

ptg26261585

client 2…
 const aReading = acquireReading();
 const base = (baseRate(aReading.month, aReading.year) * aReading.quantity);
 const taxableCharge = Math.max(0, base - taxThreshold(aReading.year));

I’m sure that, like me, you noticed that the formula for the base charge is du-
plicated between these two fragments. If you’re like me, you’re already reaching
for Extract Function (106). Interestingly, it seems our work has been done for us
elsewhere.

client 3…
 const aReading = acquireReading();
 const basicChargeAmount = calculateBaseCharge(aReading);

function calculateBaseCharge(aReading) {
 return baseRate(aReading.month, aReading.year) * aReading.quantity;
}

Given this, I have a natural impulse to change the two earlier bits of client
code to use this function. But the trouble with top-level functions like this is that
they are often easy to miss. I’d rather change the code to give the function a
closer connection to the data it processes. A good way to do this is to turn the
data into a class.

To turn the record into a class, I use Encapsulate Record (162).

class Reading {
 constructor(data) {
 this._customer = data.customer;
 this._quantity = data.quantity;
 this._month = data.month;
 this._year = data.year;
 }
 get customer() {return this._customer;}
 get quantity() {return this._quantity;}
 get month() {return this._month;}
 get year() {return this._year;}
}

To move the behavior, I’ll start with the function I already have: calculateBaseCharge.
To use the new class, I need to apply it to the data as soon as I’ve acquired it.

client 3…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const basicChargeAmount = calculateBaseCharge(aReading);

I then use Move Function (198) to move calculateBaseCharge into the new class.

Chapter 6 A First Set of Refactorings146

ptg26261585

class Reading…
 get calculateBaseCharge() {
 return baseRate(this.month, this.year) * this.quantity;
 }

client 3…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const basicChargeAmount = aReading.calculateBaseCharge;

While I’m at it, I use Rename Function (124) to make it something more to my
liking.

get baseCharge() {
 return baseRate(this.month, this.year) * this.quantity;
}

client 3…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const basicChargeAmount = aReading.baseCharge;

With this naming, the client of the reading class can’t tell whether the base
charge is a field or a derived value. This is a Good Thing—the Uniform Access
Principle [mf-ua].

I now alter the first client to call the method rather than repeat the calculation.

client 1…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const baseCharge = aReading.baseCharge;

There’s a strong chance I’ll use Inline Variable (123) on the baseCharge variable
before the day is out. But more relevant to this refactoring is the client that cal-
culates the taxable amount. My first step here is to use the new base charge
property.

client 2…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const taxableCharge = Math.max(0, aReading.baseCharge - taxThreshold(aReading.year));

I use Extract Function (106) on the calculation for the taxable charge.

function taxableChargeFn(aReading) {
 return Math.max(0, aReading.baseCharge - taxThreshold(aReading.year));
}

147Combine Functions into Class

ptg26261585

client 3…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const taxableCharge = taxableChargeFn(aReading);

Then I apply Move Function (198).

class Reading…
 get taxableCharge() {
 return Math.max(0, this.baseCharge - taxThreshold(this.year));
 }

client 3…
 const rawReading = acquireReading();
 const aReading = new Reading(rawReading);
 const taxableCharge = aReading.taxableCharge;

Since all the derived data is calculated on demand, I have no problem should
I need to update the stored data. In general, I prefer immutable data, but many
circumstances force us to work with mutable data (such as JavaScript, a language
ecosystem that wasn’t designed with immutability in mind). When there is a
reasonable chance the data will be updated somewhere in the program, then
a class is very helpful.

Chapter 6 A First Set of Refactorings148

ptg26261585

Combine Functions into Transform

function base(aReading) {...}
function taxableCharge(aReading) {...}

function enrichReading(argReading) {
 const aReading = _.cloneDeep(argReading);
 aReading.baseCharge = base(aReading);
 aReading.taxableCharge = taxableCharge(aReading);
 return aReading;
}

Motivation

Software often involves feeding data into programs that calculate various derived
information from it. These derived values may be needed in several places, and
those calculations are often repeated wherever the derived data is used. I prefer
to bring all of these derivations together, so I have a consistent place to find and
update them and avoid any duplicate logic.

One way to do this is to use a data transformation function that takes the
source data as input and calculates all the derivations, putting each derived value
as a field in the output data. Then, to examine the derivations, all I need do is
look at the transform function.

An alternative to Combine Functions into Transform is Combine Functions into
Class (144) that moves the logic into methods on a class formed from the source
data. Either of these refactorings are helpful, and my choice will often depend
on the style of programming already in the software. But there is one important
difference: Using a class is much better if the source data gets updated within
the code. Using a transform stores derived data in the new record, so if the source
data changes, I will run into inconsistencies.

149Combine Functions into Transform

ptg26261585

One of the reasons I like to do combine functions is to avoid duplication of
the derivation logic. I can do that just by using Extract Function (106) on the logic,
but it’s often difficult to find the functions unless they are kept close to the data
structures they operate on. Using a transform (or a class) makes it easy to find
and use them.

Mechanics

Create a transformation function that takes the record to be transformed
and returns the same values.

This will usually involve a deep copy of the record. It is often worthwhile to write
a test to ensure the transform does not alter the original record.

Pick some logic and move its body into the transform to create a new field
in the record. Change the client code to access the new field.

If the logic is complex, use Extract Function (106) first.

Test.

Repeat for the other relevant functions.

Example

Where I grew up, tea is an important part of life—so much that I can imagine a
special utility that provides tea to the populace that’s regulated like a utility. Every
month, the utility gets a reading of how much tea a customer has acquired.

reading = {customer: "ivan", quantity: 10, month: 5, year: 2017};

Code in various places calculates various consequences of this tea usage. One
such calculation is the base monetary amount that’s used to calculate the charge
for the customer.

client 1…
 const aReading = acquireReading();
 const baseCharge = baseRate(aReading.month, aReading.year) * aReading.quantity;

Another is the amount that should be taxed—which is less than the base amount
since the government wisely considers that every citizen should get some tea
tax free.

client 2…
 const aReading = acquireReading();
 const base = (baseRate(aReading.month, aReading.year) * aReading.quantity);
 const taxableCharge = Math.max(0, base - taxThreshold(aReading.year));

Chapter 6 A First Set of Refactorings150

ptg26261585

Looking through this code, I see these calculations repeated in several places.
Such duplication is asking for trouble when they need to change (and I’d bet it’s
“when” not “if”). I can deal with this repetition by using Extract Function (106) on
these calculations, but such functions often end up scattered around the program
making it hard for future developers to realize they are there. Indeed, looking
around I discover such a function, used in another area of the code.

client 3…
 const aReading = acquireReading();
 const basicChargeAmount = calculateBaseCharge(aReading);

function calculateBaseCharge(aReading) {
 return baseRate(aReading.month, aReading.year) * aReading.quantity;
}

One way of dealing with this is to move all of these derivations into a transfor-
mation step that takes the raw reading and emits a reading enriched with all the
common derived results.

I begin by creating a transformation function that merely copies the input object.

function enrichReading(original) {
 const result = _.cloneDeep(original);
 return result;
}

I’m using the cloneDeep from lodash to create a deep copy.

When I’m applying a transformation that produces essentially the same thing
but with additional information, I like to name it using “enrich”. If it were
producing something I felt was different, I would name it using “transform”.

I then pick one of the calculations I want to change. First, I enrich the reading
it uses with the current one that does nothing yet.

client 3…
 const rawReading = acquireReading();
 const aReading = enrichReading(rawReading);
 const basicChargeAmount = calculateBaseCharge(aReading);

I use Move Function (198) on calculateBaseCharge to move it into the enrichment
calculation.

function enrichReading(original) {
 const result = _.cloneDeep(original);
 result.baseCharge = calculateBaseCharge(result);
 return result;
}

Within the transformation function, I’m happy to mutate a result object, instead
of copying each time. I like immutability, but most common languages make it
difficult to work with. I’m prepared to go through the extra effort to support

151Combine Functions into Transform

ptg26261585

it at boundaries, but will mutate within smaller scopes. I also pick my names
(using aReading as the accumulating variable) to make it easier to move the code
into the transformer function.

I change the client that uses that function to use the enriched field instead.

client 3…
 const rawReading = acquireReading();
 const aReading = enrichReading(rawReading);
 const basicChargeAmount = aReading.baseCharge;

Once I’ve moved all calls to calculateBaseCharge, I can nest it inside enrichReading.
That would make it clear that clients that need the calculated base charge should
use the enriched record.

One trap to beware of here. When I write enrichReading like this, to return the
enriched reading, I’m implying that the original reading record isn’t changed. So
it’s wise for me to add a test.

it('check reading unchanged', function() {
 const baseReading = {customer: "ivan", quantity: 15, month: 5, year: 2017};
 const oracle = _.cloneDeep(baseReading);
 enrichReading(baseReading);
 assert.deepEqual(baseReading, oracle);
});

I can then change client 1 to also use the same field.

client 1…
 const rawReading = acquireReading();
 const aReading = enrichReading(rawReading);
 const baseCharge = aReading.baseCharge;

There is a good chance I can then use Inline Variable (123) on baseCharge too.
Now I turn to the taxable amount calculation. My first step is to add in the

transformation function.

const rawReading = acquireReading();
const aReading = enrichReading(rawReading);
const base = (baseRate(aReading.month, aReading.year) * aReading.quantity);
const taxableCharge = Math.max(0, base - taxThreshold(aReading.year));

I can immediately replace the calculation of the base charge with the new field.
If the calculation was complex, I could Extract Function (106) first, but here it’s
simple enough to do in one step.

const rawReading = acquireReading();
const aReading = enrichReading(rawReading);
const base = aReading.baseCharge;
const taxableCharge = Math.max(0, base - taxThreshold(aReading.year));

Once I’ve tested that that works, I apply Inline Variable (123):

Chapter 6 A First Set of Refactorings152

ptg26261585

const rawReading = acquireReading();
const aReading = enrichReading(rawReading);
const taxableCharge = Math.max(0, aReading.baseCharge - taxThreshold(aReading.year));

and move that computation into the transformer:

function enrichReading(original) {
 const result = _.cloneDeep(original);
 result.baseCharge = calculateBaseCharge(result);
 result.taxableCharge = Math.max(0, result.baseCharge - taxThreshold(result.year));
 return result;
}

I modify the original code to use the new field.

const rawReading = acquireReading();
const aReading = enrichReading(rawReading);
const taxableCharge = aReading.taxableCharge;

Once I’ve tested that, it’s likely I would be able to use Inline Variable (123) on
taxableCharge.

One big problem with an enriched reading like this is: What happens should
a client change a data value? Changing, say, the quantity field would result in
data that’s inconsistent. To avoid this in JavaScript, my best option is to use
Combine Functions into Class (144) instead. If I’m in a language with immutable
data structures, I don’t have this problem, so its more common to see transforms
in those languages. But even in languages without immutability, I can use trans-
forms if the data appears in a read-only context, such as deriving data to display
on a web page.

153Combine Functions into Transform

ptg26261585

Split Phase

const orderData = orderString.split(/\s+/);
const productPrice = priceList[orderData[0].split("-")[1]];
const orderPrice = parseInt(orderData[1]) * productPrice;

const orderRecord = parseOrder(order);
const orderPrice = price(orderRecord, priceList);

function parseOrder(aString) {
 const values = aString.split(/\s+/);
 return ({
 productID: values[0].split("-")[1],
 quantity: parseInt(values[1]),
 });
}
function price(order, priceList) {
 return order.quantity * priceList[order.productID];
}

Motivation

When I run into code that’s dealing with two different things, I look for a way
to split it into separate modules. I endeavor to make this split because, if I need to
make a change, I can deal with each topic separately and not have to hold both
in my head together. If I’m lucky, I may only have to change one module without
having to remember the details of the other one at all.

One of the neatest ways to do a split like this is to divide the behavior into
two sequential phases. A good example of this is when you have some processing
whose inputs don’t reflect the model you need to carry out the logic. Before you
begin, you can massage the input into a convenient form for your main processing.

Chapter 6 A First Set of Refactorings154

ptg26261585

Or, you can take the logic you need to do and break it down into sequential
steps, where each step is significantly different in what it does.

The most obvious example of this is a compiler. It’s a basic task is to take some
text (code in a programming language) and turn it into some executable form
(e.g., object code for a specific hardware). Over time, we’ve found this can be
usefully split into a chain of phases: tokenizing the text, parsing the tokens into
a syntax tree, then various steps of transforming the syntax tree (e.g., for opti-
mization), and finally generating the object code. Each step has a limited scope
and I can think of one step without understanding the details of others.

Splitting phases like this is common in large software; the various phases in a
compiler can each contain many functions and classes. But I can carry out the
basic split-phase refactoring on any fragment of code—whenever I see an oppor-
tunity to usefully separate the code into different phases. The best clue is when
different stages of the fragment use different sets of data and functions. By turning
them into separate modules I can make this difference explicit, revealing the
difference in the code.

Mechanics

Extract the second phase code into its own function.

Test.

Introduce an intermediate data structure as an additional argument to the
extracted function.

Test.

Examine each parameter of the extracted second phase. If it is used by first
phase, move it to the intermediate data structure. Test after each move.

Sometimes, a parameter should not be used by the second phase. In this case,
extract the results of each usage of the parameter into a field of the intermediate
data structure and use Move Statements to Callers (217) on the line that populates it.

Apply Extract Function (106) on the first-phase code, returning the intermediate
data structure.

It’s also reasonable to extract the first phase into a transformer object.

Example

I’ll start with code to price an order for some vague and unimportant kind of
goods:

155Split Phase

ptg26261585

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const shippingPerCase = (basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = quantity * shippingPerCase;
 const price = basePrice - discount + shippingCost;
 return price;
 }

Although this is the usual kind of trivial example, there is a sense of two
phases going on here. The first couple of lines of code use the product information
to calculate the product-oriented price of the order, while the later code uses
shipping information to determine the shipping cost. If I have changes coming
up that complicate the pricing and shipping calculations, but they work relatively
independently, then splitting this code into two phases is valuable.

I begin by applying Extract Function (106) to the shipping calculation.

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const price = applyShipping(basePrice, shippingMethod, quantity, discount);
 return price;
 }
 function applyShipping(basePrice, shippingMethod, quantity, discount) {
 const shippingPerCase = (basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = quantity * shippingPerCase;
 const price = basePrice - discount + shippingCost;
 return price;
 }

I pass in all the data that this second phase needs as individual parameters. In
a more realistic case, there can be a lot of these, but I don’t worry about it as I’ll
whittle them down later.

Next, I introduce the intermediate data structure that will communicate between
the two phases.

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const priceData = {};
 const price = applyShipping(priceData, basePrice, shippingMethod, quantity, discount);
 return price;
 }

Chapter 6 A First Set of Refactorings156

ptg26261585

 function applyShipping(priceData, basePrice, shippingMethod, quantity, discount) {
 const shippingPerCase = (basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = quantity * shippingPerCase;
 const price = basePrice - discount + shippingCost;
 return price;
 }

Now, I look at the various parameters to applyShipping. The first one is basePrice
which is created by the first-phase code. So I move this into the intermediate
data structure, removing it from the parameter list.

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const priceData = {basePrice: basePrice};
 const price = applyShipping(priceData, basePrice, shippingMethod, quantity, discount);
 return price;
 }
 function applyShipping(priceData, basePrice, shippingMethod, quantity, discount) {
 const shippingPerCase = (priceData.basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = quantity * shippingPerCase;
 const price = priceData.basePrice - discount + shippingCost;
 return price;
 }

The next parameter in the list is shippingMethod. This one I leave as is, since it
isn’t used by the first-phase code.

After this, I have quantity. This is used by the first phase but not created by it,
so I could actually leave this in the parameter list. My usual preference, however,
is to move as much as I can to the intermediate data structure.

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const priceData = {basePrice: basePrice, quantity: quantity};
 const price = applyShipping(priceData, shippingMethod, quantity, discount);
 return price;
 }
 function applyShipping(priceData, shippingMethod, quantity, discount) {
 const shippingPerCase = (priceData.basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = priceData.quantity * shippingPerCase;
 const price = priceData.basePrice - discount + shippingCost;
 return price;
 }

157Split Phase

ptg26261585

I do the same with discount.

 function priceOrder(product, quantity, shippingMethod) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 const priceData = {basePrice: basePrice, quantity: quantity, discount:discount};
 const price = applyShipping(priceData, shippingMethod, discount);
 return price;
 }
 function applyShipping(priceData, shippingMethod, discount) {
 const shippingPerCase = (priceData.basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = priceData.quantity * shippingPerCase;
 const price = priceData.basePrice - priceData.discount + shippingCost;
 return price;
 }

Once I’ve gone through all the function parameters, I have the intermediate
data structure fully formed. So I can extract the first-phase code into its own
function, returning this data.

 function priceOrder(product, quantity, shippingMethod) {
 const priceData = calculatePricingData(product, quantity);
 const price = applyShipping(priceData, shippingMethod);
 return price;
 }
 function calculatePricingData(product, quantity) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 return {basePrice: basePrice, quantity: quantity, discount:discount};
 }
 function applyShipping(priceData, shippingMethod) {
 const shippingPerCase = (priceData.basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = priceData.quantity * shippingPerCase;
 const price = priceData.basePrice - priceData.discount + shippingCost;
 return price;
 }

I can’t resist tidying out those final constants.

 function priceOrder(product, quantity, shippingMethod) {
 const priceData = calculatePricingData(product, quantity);

return applyShipping(priceData, shippingMethod);
 }

Chapter 6 A First Set of Refactorings158

ptg26261585

 function calculatePricingData(product, quantity) {
 const basePrice = product.basePrice * quantity;
 const discount = Math.max(quantity - product.discountThreshold, 0)
 * product.basePrice * product.discountRate;
 return {basePrice: basePrice, quantity: quantity, discount:discount};
 }
 function applyShipping(priceData, shippingMethod) {
 const shippingPerCase = (priceData.basePrice > shippingMethod.discountThreshold)
 ? shippingMethod.discountedFee : shippingMethod.feePerCase;
 const shippingCost = priceData.quantity * shippingPerCase;

return priceData.basePrice - priceData.discount + shippingCost;
 }

159Split Phase

ptg26261585

This page intentionally left blank

ptg26261585

Perhaps the most important criteria to be used in decomposing modules is to
identify secrets that modules should hide from the rest of the system [Parnas].
Data structures are the most common secrets, and I can hide data structures by
encapsulating them with Encapsulate Record (162) and Encapsulate Collection (170).
Even primitive data values can be encapsulated with Replace Primitive with Object
(174)—the magnitude of second-order benefits from doing this often surprises
people. Temporary variables often get in the way of refactoring—I have to ensure
they are calculated in the right order and their values are available to other parts
of the code that need them. Using Replace Temp with Query (178) is a great help
here, particularly when splitting up an overly long function.

Classes were designed for information hiding. In the previous chapter, I de-
scribed a way to form them with Combine Functions into Class (144). The common
extract/inline operations also apply to classes with Extract Class (182) and Inline
Class (186).

As well as hiding the internals of classes, it’s often useful to hide connections
between classes, which I can do with Hide Delegate (189). But too much hiding
leads to bloated interfaces, so I also need its reverse: Remove Middle Man (192).

Classes and modules are the largest forms of encapsulation, but functions also
encapsulate their implementation. Sometimes, I may need to make a wholesale
change to an algorithm, which I can do by wrapping it in a function with Extract
Function (106) and applying Substitute Algorithm (195).

161

Chapter 7

Encapsulation

ptg26261585

Encapsulate Record
formerly: Replace Record with Data Class

organization = {name: "Acme Gooseberries", country: "GB"};

class Organization {
 constructor(data) {
 this._name = data.name;
 this._country = data.country;
 }
 get name() {return this._name;}
 set name(arg) {this._name = arg;}
 get country() {return this._country;}
 set country(arg) {this._country = arg;}
}

Motivation

This is why I often favor objects over records for mutable data. With objects, I
can hide what is stored and provide methods for all three values. The user of
the object doesn’t need to know or care which is stored and which is calculated.
This encapsulation also helps with renaming: I can rename the field while pro-
viding methods for both the new and the old names, gradually updating callers
until they are all done.

I just said I favor objects for mutable data. If I have an immutable value, I can
just have all three values in my record, using an enrichment step if necessary.
Similarly, it’s easy to copy the field when renaming.

I can have two kinds of record structures: those where I declare the legal field
names and those that allow me to use whatever I like. The latter are often imple-
mented through a library class called something like hash, map, hashmap, dictio-
nary, or associative array. Many languages provide convenient syntax for creating
hashmaps, which makes them useful in many programming situations. The
downside of using them is they are aren’t explicit about their fields. The only

Chapter 7 Encapsulation162

ptg26261585

way I can tell if they use start/end or start/length is by looking at where they
are created and used. This isn’t a problem if they are only used in a small section
of a program, but the wider their scope of usage, the greater problem I get from
their implicit structure. I could refactor such implicit records into explicit ones—but
if I need to do that, I’d rather make them classes instead.

It’s common to pass nested structures of lists and hashmaps which are often
serialized into formats like JSON or XML. Such structures can be encapsulated
too, which helps if their formats change later on or if I’m concerned about updates
to the data that are hard to keep track of.

Mechanics

Use Encapsulate Variable (132) on the variable holding the record.

Give the functions that encapsulate the record names that are easily searchable.

Replace the content of the variable with a simple class that wraps the record.
Define an accessor inside this class that returns the raw record. Modify the
functions that encapsulate the variable to use this accessor.

Test.

Provide new functions that return the object rather than the raw record.

For each user of the record, replace its use of a function that returns the
record with a function that returns the object. Use an accessor on the object
to get at the field data, creating that accessor if needed. Test after each
change.

If it’s a complex record, such as one with a nested structure, focus on clients that
update the data first. Consider returning a copy or read-only proxy of the data
for clients that only read the data.

Remove the class’s raw data accessor and the easily searchable functions
that returned the raw record.

Test.

If the fields of the record are themselves structures, consider using
Encapsulate Record and Encapsulate Collection (170) recursively.

Example
I’ll start with a constant that is widely used across a program.

const organization = {name: "Acme Gooseberries", country: "GB"};

This is a JavaScript object which is being used as a record structure by various
parts of the program, with accesses like this:

163Encapsulate Record

ptg26261585

result += `<h1>${organization.name}</h1>`;

and

organization.name = newName;

The first step is a simple Encapsulate Variable (132).

function getRawDataOfOrganization() {return organization;}

example reader…
 result += `<h1>${getRawDataOfOrganization().name}</h1>`;

example writer…
getRawDataOfOrganization().name = newName;

It’s not quite a standard Encapsulate Variable (132), since I gave the getter a
name deliberately chosen to be both ugly and easy to search for. This is because
I intend its life to be short.

Encapsulating a record means going deeper than just the variable itself; I want
to control how it’s manipulated. I can do this by replacing the record with a class.

class Organization…
 class Organization {
 constructor(data) {
 this._data = data;
 }
 }

top level
 const organization = new Organization({name: "Acme Gooseberries", country: "GB"});

 function getRawDataOfOrganization() {return organization._data;}
 function getOrganization() {return organization;}

Now that I have an object in place, I start looking at the users of the record.
Any one that updates the record gets replaced with a setter.

class Organization…
 set name(aString) {this._data.name = aString;}

client…
 getOrganization().name = newName;

Similarly, I replace any readers with the appropriate getter.

class Organization…
 get name() {return this._data.name;}

client…
 result += `<h1>${getOrganization().name}</h1>`;

Chapter 7 Encapsulation164

ptg26261585

After I’ve done that, I can follow through on my threat to give the ugly
sounding function a short life.

function getRawDataOfOrganization() {return organization._data;}
function getOrganization() {return organization;}

I’d also be inclined to fold the _data field directly into the object.

class Organization {
 constructor(data) {

this._name = data.name;
this._country = data.country;

 }
 get name() {return this._name;}
 set name(aString) {this._name = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
}

This has the advantage of breaking the link to the input data record. This might
be useful if a reference to it runs around, which would break encapsulation.
Should I not fold the data into individual fields, I would be wise to copy _data
when I assign it.

Example: Encapsulating a Nested Record
The above example looks at a shallow record, but what do I do with data that
is deeply nested, e.g., coming from a JSON document? The core refactoring steps
still apply, and I have to be equally careful with updates, but I do get some options
around reads.

As an example, here is some slightly more nested data: a collection of
customers, kept in a hashmap indexed by their customer ID.

165Encapsulate Record

ptg26261585

"1920": {
 name: "martin",
 id: "1920",
 usages: {
 "2016": {
 "1": 50,
 "2": 55,
 // remaining months of the year
 },
 "2015": {
 "1": 70,
 "2": 63,
 // remaining months of the year
 }
 }
},
"38673": {
 name: "neal",
 id: "38673",
 // more customers in a similar form

With more nested data, reads and writes can be digging into the data structure.

sample update…
 customerData[customerID].usages[year][month] = amount;

sample read…
 function compareUsage (customerID, laterYear, month) {
 const later = customerData[customerID].usages[laterYear][month];
 const earlier = customerData[customerID].usages[laterYear - 1][month];
 return {laterAmount: later, change: later - earlier};
 }

To encapsulate this data, I also start with Encapsulate Variable (132).

function getRawDataOfCustomers() {return customerData;}
function setRawDataOfCustomers(arg) {customerData = arg;}

sample update…
 getRawDataOfCustomers()[customerID].usages[year][month] = amount;

sample read…
 function compareUsage (customerID, laterYear, month) {
 const later = getRawDataOfCustomers()[customerID].usages[laterYear][month];
 const earlier = getRawDataOfCustomers()[customerID].usages[laterYear - 1][month];
 return {laterAmount: later, change: later - earlier};
 }

I then make a class for the overall data structure.

Chapter 7 Encapsulation166

ptg26261585

class CustomerData {
 constructor(data) {
 this._data = data;
 }
}

top level…
 function getCustomerData() {return customerData;}
 function getRawDataOfCustomers() {return customerData._data;}
 function setRawDataOfCustomers(arg) {customerData = new CustomerData(arg);}

The most important area to deal with is the updates. So, while I look at all the
callers of getRawDataOfCustomers, I’m focused on those where the data is changed. To
remind you, here’s the update again:

sample update…
 getRawDataOfCustomers()[customerID].usages[year][month] = amount;

The general mechanics now say to return the full customer and use an accessor,
creating one if needed. I don’t have a setter on the customer for this update, and
this one digs into the structure. So, to make one, I begin by using Extract Function
(106) on the code that digs into the data structure.

sample update…
 setUsage(customerID, year, month, amount);

top level…
 function setUsage(customerID, year, month, amount) {
 getRawDataOfCustomers()[customerID].usages[year][month] = amount;
 }

I then use Move Function (198) to move it into the new customer data class.

sample update…
getCustomerData().setUsage(customerID, year, month, amount);

class CustomerData…
 setUsage(customerID, year, month, amount) {
 this._data[customerID].usages[year][month] = amount;
 }

When working with a big data structure, I like to concentrate on the updates.
Getting them visible and gathered in a single place is the most important part
of the encapsulation.

At some point, I will think I’ve got them all—but how can I be sure? There’s a
couple of ways to check. One is to modify getRawDataOfCustomers to return a deep
copy of the data; if my test coverage is good, one of the tests should break if I
missed a modification.

167Encapsulate Record

ptg26261585

top level…
 function getCustomerData() {return customerData;}
 function getRawDataOfCustomers() {return customerData.rawData;}
 function setRawDataOfCustomers(arg) {customerData = new CustomerData(arg);}

class CustomerData…
 get rawData() {
 return _.cloneDeep(this._data);
 }

I’m using the lodash library to make a deep copy.

Another approach is to return a read-only proxy for the data structure. Such a
proxy could raise an exception if the client code tries to modify the underlying
object. Some languages make this easy, but it’s a pain in JavaScript, so I’ll leave
it as an exercise for the reader. I could also take a copy and recursively freeze it
to detect any modifications.

Dealing with the updates is valuable, but what about the readers? Here there
are a few options.

The first option is to do the same thing as I did for the setters. Extract all the
reads into their own functions and move them into the customer data class.

class CustomerData…
 usage(customerID, year, month) {
 return this._data[customerID].usages[year][month];
 }

top level…
 function compareUsage (customerID, laterYear, month) {
 const later = getCustomerData().usage(customerID, laterYear, month);
 const earlier = getCustomerData().usage(customerID, laterYear - 1, month);
 return {laterAmount: later, change: later - earlier};
 }

The great thing about this approach is that it gives customerData an explicit API
that captures all the uses made of it. I can look at the class and see all their uses
of the data. But this can be a lot of code for lots of special cases. Modern lan-
guages provide good affordances for digging into a list-and-hash [mf-lh] data
structure, so it’s useful to give clients just such a data structure to work with.

If the client wants a data structure, I can just hand out the actual data. But the
problem with this is that there’s no way to prevent clients from modifying the data
directly, which breaks the whole point of encapsulating all the updates inside
functions. Consequently, the simplest thing to do is to provide a copy of the
underlying data, using the rawData method I wrote earlier.

Chapter 7 Encapsulation168

ptg26261585

class CustomerData…
 get rawData() {
 return _.cloneDeep(this._data);
 }

top level…
 function compareUsage (customerID, laterYear, month) {
 const later = getCustomerData().rawData[customerID].usages[laterYear][month];
 const earlier = getCustomerData().rawData[customerID].usages[laterYear - 1][month];
 return {laterAmount: later, change: later - earlier};
 }

But although it’s simple, there are downsides. The most obvious problem is
the cost of copying a large data structure, which may turn out to be a performance
problem. As with anything like this, however, the performance cost might be
acceptable—I would want to measure its impact before I start to worry about it.
There may also be confusion if clients expect modifying the copied data to
modify the original. In those cases, a read-only proxy or freezing the copied data
might provide a helpful error should they do this.

Another option is more work, but offers the most control: Apply Encapsulate
Record recursively. With this, I turn the customer record into its own class, apply
Encapsulate Collection (170) to the usages, and create a usage class. I can then
enforce control of updates by using accessors, perhaps applying Change Reference
to Value (252) on the usage objects. But this can be a lot of effort for a large data
structure—and not really needed if I don’t access that much of the data structure.
Sometimes, a judicious mix of getters and new classes may work, using a getter
to dig deep into the structure but returning an object that wraps the structure
rather than the unencapsulated data. I wrote about this kind of thing in an article
“Refactoring Code to Load a Document” [mf-ref-doc].

169Encapsulate Record

ptg26261585

Encapsulate Collection

class Person {
 get courses() {return this._courses;}
 set courses(aList) {this._courses = aList;}

class Person {
 get courses() {return this._courses.slice();}
 addCourse(aCourse) { ... }
 removeCourse(aCourse) { ... }

Motivation

I like encapsulating any mutable data in my programs. This makes it easier to
see when and how data structures are modified, which then makes it easier
to change those data structures when I need to. Encapsulation is often encouraged,
particularly by object-oriented developers, but a common mistake occurs when
working with collections. Access to a collection variable may be encapsulated,
but if the getter returns the collection itself, then that collection’s membership
can be altered without the enclosing class being able to intervene.

To avoid this, I provide collection modifier methods—usually add and remove—on
the class itself. This way, changes to the collection go through the owning class,
giving me the opportunity to modify such changes as the program evolves.

Iff the team has the habit to not to modify collections outside the original
module, just providing these methods may be enough. However, it’s usually un-
wise to rely on such habits; a mistake here can lead to bugs that are difficult to
track down later. A better approach is to ensure that the getter for the collection
does not return the raw collection, so that clients cannot accidentally change it.

One way to prevent modification of the underlying collection is by never re-
turning a collection value. In this approach, any use of a collection field is done
with specific methods on the owning class, replacing aCustomer.orders.size with
aCustomer.numberOfOrders. I don’t agree with this approach. Modern languages have
rich collection classes with standardized interfaces, which can be combined

Chapter 7 Encapsulation170

ptg26261585

in useful ways such as Collection Pipelines [mf-cp]. Putting in special methods
to handle this kind of functionality adds a lot of extra code and cripples the easy
composability of collection operations.

Another way is to allow some form of read-only access to a collection. Java,
for example, makes it easy to return a read-only proxy to the collection. Such a
proxy forwards all reads to the underlying collection, but blocks all writes—in
Java’s case, throwing an exception. A similar route is used by libraries that base
their collection composition on some kind of iterator or enumerable object—
providing that iterator cannot modify the underlying collection.

Probably the most common approach is to provide a getting method for the
collection, but make it return a copy of the underlying collection. That way, any
modifications to the copy don’t affect the encapsulated collection. This might
cause some confusion if programmers expect the returned collection to modify the
source field—but in many code bases, programmers are used to collection getters
providing copies. If the collection is huge, this may be a performance issue—but
most lists aren’t all that big, so the general rules for performance should apply
(Refactoring and Performance (64)).

Another difference between using a proxy and a copy is that a modification of
the source data will be visible in the proxy but not in a copy. This isn’t an issue
most of the time, because lists accessed in this way are usually only held for a
short time.

What’s important here is consistency within a code base. Use only one mecha-
nism so everyone can get used to how it behaves and expect it when calling any
collection accessor function.

Mechanics

Apply Encapsulate Variable (132) if the reference to the collection isn’t already
encapsulated.

Add functions to add and remove elements from the collection.

If there is a setter for the collection, use Remove Setting Method (331) if possible.
If not, make it take a copy of the provided collection.

Run static checks.

Find all references to the collection. If anyone calls modifiers on the collec-
tion, change them to use the new add/remove functions. Test after each
change.

Modify the getter for the collection to return a protected view on it, using
a read-only proxy or a copy.

Test.

171Encapsulate Collection

ptg26261585

Example

I start with a person class that has a field for a list of courses.

class Person…
 constructor (name) {
 this._name = name;
 this._courses = [];
 }
 get name() {return this._name;}
 get courses() {return this._courses;}
 set courses(aList) {this._courses = aList;}

class Course…
 constructor(name, isAdvanced) {
 this._name = name;
 this._isAdvanced = isAdvanced;
 }
 get name() {return this._name;}
 get isAdvanced() {return this._isAdvanced;}

Clients use the course collection to gather information on courses.

numAdvancedCourses = aPerson.courses
 .filter(c => c.isAdvanced)
 .length
;

A naive developer would say this class has proper data encapsulation: After
all, each field is protected by accessor methods. But I would argue that the list
of courses isn’t properly encapsulated. Certainly, anyone updating the courses
as a single value has proper control through the setter:

client code…
 const basicCourseNames = readBasicCourseNames(filename);
 aPerson.courses = basicCourseNames.map(name => new Course(name, false));

But clients might find it easier to update the course list directly.

client code…
 for(const name of readBasicCourseNames(filename)) {
 aPerson.courses.push(new Course(name, false));
 }

This violates encapsulating because the person class has no ability to take
control when the list is updated in this way. While the reference to the field is
encapsulated, the content of the field is not.

I’ll begin creating proper encapsulation by adding methods to the person class
that allow a client to add and remove individual courses.

Chapter 7 Encapsulation172

ptg26261585

class Person…
 addCourse(aCourse) {
 this._courses.push(aCourse);
 }
 removeCourse(aCourse, fnIfAbsent = () => {throw new RangeError();}) {
 const index = this._courses.indexOf(aCourse);
 if (index === -1) fnIfAbsent();
 else this._courses.splice(index, 1);
 }

With a removal, I have to decide what to do if a client asks to remove an ele-
ment that isn’t in the collection. I can either shrug, or raise an error. With this
code, I default to raising an error, but give the callers an opportunity to do
something else if they wish.

I then change any code that calls modifiers directly on the collection to use
new methods.

client code…
 for(const name of readBasicCourseNames(filename)) {
 aPerson.addCourse(new Course(name, false));
 }

With individual add and remove methods, there is usually no need for setCourses,
in which case I’ll use Remove Setting Method (331) on it. Should the API need a
setting method for some reason, I ensure it puts a copy of the collection in the
field.

class Person…
 set courses(aList) {this._courses = aList.slice();}

All this enables the clients to use the right kind of modifier methods, but I
prefer to ensure nobody modifies the list without using them. I can do this by
providing a copy.

class Person…
 get courses() {return this._courses.slice();}

In general, I find it wise to be moderately paranoid about collections and I’d
rather copy them unnecessarily than debug errors due to unexpected modifica-
tions. Modifications aren’t always obvious; for example, sorting an array in
JavaScript modifies the original, while many languages default to making a copy
for an operation that changes a collection. Any class that’s responsible for man-
aging a collection should always give out copies—but I also get into the habit of
making a copy if I do something that’s liable to change a collection.

173Encapsulate Collection

ptg26261585

Replace Primitive with Object
formerly: Replace Data Value with Object
formerly: Replace Type Code with Class

orders.filter(o => "high" === o.priority
 || "rush" === o.priority);

orders.filter(o => o.priority.higherThan(new Priority("normal")))

Motivation

Often, in early stages of development you make decisions about representing
simple facts as simple data items, such as numbers or strings. As development
proceeds, those simple items aren’t so simple anymore. A telephone number may
be represented as a string for a while, but later it will need special behavior for
formatting, extracting the area code, and the like. This kind of logic can quickly
end up being duplicated around the code base, increasing the effort whenever
it needs to be used.

As soon as I realize I want to do something other than simple printing, I like
to create a new class for that bit of data. At first, such a class does little more
than wrap the primitive—but once I have that class, I have a place to put behavior
specific to its needs. These little values start very humble, but once nurtured they
can grow into useful tools. They may not look like much, but I find their effects
on a code base can be surprisingly large. Indeed many experienced developers
consider this to be one of the most valuable refactorings in the toolkit—even
though it often seems counterintuitive to a new programmer.

Chapter 7 Encapsulation174

ptg26261585

Mechanics

Apply Encapsulate Variable (132) if it isn’t already.

Create a simple value class for the data value. It should take the existing
value in its constructor and provide a getter for that value.

Run static checks.

Change the setter to create a new instance of the value class and store that
in the field, changing the type of the field if present.

Change the getter to return the result of invoking the getter of the new class.

Test.

Consider using Rename Function (124) on the original accessors to better
reflect what they do.

Consider clarifying the role of the new object as a value or reference object
by applying Change Reference to Value (252) or Change Value to Reference (256).

Example

I begin with a simple order class that reads its data from a simple record structure.
One of its properties is a priority, which it reads as a simple string.

class Order…
 constructor(data) {
 this.priority = data.priority;
 // more initialization

Some client codes uses it like this:

client…
 highPriorityCount = orders.filter(o => "high" === o.priority
 || "rush" === o.priority)
 .length;

Whenever I’m fiddling with a data value, the first thing I do is use Encapsulate
Variable (132) on it.

class Order…
 get priority() {return this._priority;}
 set priority(aString) {this._priority = aString;}

The constructor line that initializes the priority will now use the setter I define here.

175Replace Primitive with Object

ptg26261585

This self-encapsulates the field so I can preserve its current use while I
manipulate the data itself.

I create a simple value class for the priority. It has a constructor for the value
and a conversion function to return a string.

 class Priority {
 constructor(value) {this._value = value;}
 toString() {return this._value;}
 }

I prefer using a conversion function (toString) rather than a getter (value) here. For clients
of the class, asking for the string representation should feel more like a conversion than
getting a property.

I then modify the accessors to use this new class.

class Order…
 get priority() {return this._priority.toString();}
 set priority(aString) {this._priority = new Priority(aString);}

Now that I have a priority class, I find the current getter on the order to be
misleading. It doesn’t return the priority—but a string that describes the priority.
My immediate move is to use Rename Function (124).

class Order…
 get priorityString() {return this._priority.toString();}
 set priority(aString) {this._priority = new Priority(aString);}

client…
 highPriorityCount = orders.filter(o => "high" === o.priorityString
 || "rush" === o.priorityString)
 .length;

In this case, I’m happy to retain the name of the setter. The name of the
argument communicates what it expects.

Now I’m done with the formal refactoring. But as I look at who uses the prior-
ity, I consider whether they should use the priority class themselves. As a result,
I provide a getter on order that provides the new priority object directly.

class Order…
 get priority() {return this._priority;}
 get priorityString() {return this._priority.toString();}
 set priority(aString) {this._priority = new Priority(aString);}

client…
 highPriorityCount = orders.filter(o => "high" === o.priority.toString()
 || "rush" === o.priority.toString())
 .length;

Chapter 7 Encapsulation176

ptg26261585

As the priority class becomes useful elsewhere, I would allow clients of the
order to use the setter with a priority instance, which I do by adjusting the priority
constructor.

class Priority…
 constructor(value) {
 if (value instanceof Priority) return value;
 this._value = value;
 }

The point of all this is that now, my new priority class can be useful as a place
for new behavior—either new to the code or moved from elsewhere. Here’s some
simple code to add validation of priority values and comparison logic:

class Priority…
 constructor(value) {
 if (value instanceof Priority) return value;
 if (Priority.legalValues().includes(value))
 this._value = value;
 else
 throw new Error(`<${value}> is invalid for Priority`);
 }
 toString() {return this._value;}
 get _index() {return Priority.legalValues().findIndex(s => s === this._value);}
 static legalValues() {return ['low', 'normal', 'high', 'rush'];}

 equals(other) {return this._index === other._index;}
 higherThan(other) {return this._index > other._index;}
 lowerThan(other) {return this._index < other._index;}

As I do this, I decide that a priority should be a value object, so I provide an
equals method and ensure that it is immutable.

Now I’ve added that behavior, I can make the client code more meaningful:

client…
 highPriorityCount = orders.filter(o => o.priority.higherThan(new Priority("normal")))
 .length;

177Replace Primitive with Object

ptg26261585

Replace Temp with Query

const basePrice = this._quantity * this._itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

get basePrice() {this._quantity * this._itemPrice;}

...

if (this.basePrice > 1000)
 return this.basePrice * 0.95;
else
 return this.basePrice * 0.98;

Motivation

One use of temporary variables is to capture the value of some code in order to
refer to it later in a function. Using a temp allows me to refer to the value while
explaining its meaning and avoiding repeating the code that calculates it. But
while using a variable is handy, it can often be worthwhile to go a step further
and use a function instead.

If I’m working on breaking up a large function, turning variables into their own
functions makes it easier to extract parts of the function, since I no longer need

Chapter 7 Encapsulation178

ptg26261585

to pass in variables into the extracted functions. Putting this logic into functions
often also sets up a stronger boundary between the extracted logic and the orig-
inal function, which helps me spot and avoid awkward dependencies and side
effects.

Using functions instead of variables also allows me to avoid duplicating the
calculation logic in similar functions. Whenever I see variables calculated in
the same way in different places, I look to turn them into a single function.

This refactoring works best if I’m inside a class, since the class provides a
shared context for the methods I’m extracting. Outside of a class, I’m liable to
have too many parameters in a top-level function which negates much of the
benefit of using a function. Nested functions can avoid this, but they limit my
ability to share the logic between related functions.

Only some temporary variables are suitable for Replace Temp with Query. The
variable needs to be calculated once and then only be read afterwards. In
the simplest case, this means the variable is assigned to once, but it’s also possible
to have several assignments in a more complicated lump of code—all of which
has to be extracted into the query. Furthermore, the logic used to calculate the
variable must yield the same result when the variable is used later—which rules
out variables used as snapshots with names like oldAddress.

Mechanics

Check that the variable is determined entirely before it’s used, and the code
that calculates it does not yield a different value whenever it is used.

If the variable isn’t read-only, and can be made read-only, do so.

Test.

Extract the assignment of the variable into a function.

If the variable and the function cannot share a name, use a temporary name for
the function.

Ensure the extracted function is free of side effects. If not, use Separate Query from
Modifier (306).

Test.

Use Inline Variable (123) to remove the temp.

179Replace Temp with Query

ptg26261585

Example

Here is a simple class:

class Order…
 constructor(quantity, item) {
 this._quantity = quantity;
 this._item = item;
 }

 get price() {
 var basePrice = this._quantity * this._item.price;
 var discountFactor = 0.98;
 if (basePrice > 1000) discountFactor -= 0.03;
 return basePrice * discountFactor;
 }
}

I want to replace the temps basePrice and discountFactor with methods.
Starting with basePrice, I make it const and run tests. This is a good way of

checking that I haven’t missed a reassignment—unlikely in such a short function
but common when I’m dealing with something larger.

class Order…
 constructor(quantity, item) {
 this._quantity = quantity;
 this._item = item;
 }

 get price() {
const basePrice = this._quantity * this._item.price;

 var discountFactor = 0.98;
 if (basePrice > 1000) discountFactor -= 0.03;
 return basePrice * discountFactor;
 }
}

I then extract the right-hand side of the assignment to a getting method.

class Order…
 get price() {
 const basePrice = this.basePrice;
 var discountFactor = 0.98;
 if (basePrice > 1000) discountFactor -= 0.03;
 return basePrice * discountFactor;
 }

 get basePrice() {
 return this._quantity * this._item.price;
 }

Chapter 7 Encapsulation180

ptg26261585

I test, and apply Inline Variable (123).

class Order…
 get price() {

const basePrice = this.basePrice;
 var discountFactor = 0.98;
 if (this.basePrice > 1000) discountFactor -= 0.03;
 return this.basePrice * discountFactor;
 }

I then repeat the steps with discountFactor, first using Extract Function (106).

class Order…
 get price() {

const discountFactor = this.discountFactor;
 return this.basePrice * discountFactor;
 }

 get discountFactor() {
 var discountFactor = 0.98;
 if (this.basePrice > 1000) discountFactor -= 0.03;
 return discountFactor;
 }

In this case I need my extracted function to contain both assignments to
discountFactor. I can also set the original variable to be const.

Then, I inline:

 get price() {
 return this.basePrice * this.discountFactor;
 }

181Replace Temp with Query

ptg26261585

Extract Class
inverse of: Inline Class (186)

class Person {
 get officeAreaCode() {return this._officeAreaCode;}
 get officeNumber() {return this._officeNumber;}

class Person {
 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 get officeNumber() {return this._telephoneNumber.number;}
}
class TelephoneNumber {
 get areaCode() {return this._areaCode;}
 get number() {return this._number;}
}

Motivation

You’ve probably read guidelines that a class should be a crisp abstraction, only
handle a few clear responsibilities, and so on. In practice, classes grow. You add
some operations here, a bit of data there. You add a responsibility to a class
feeling that it’s not worth a separate class—but as that responsibility grows and
breeds, the class becomes too complicated. Soon, your class is as crisp as a
microwaved duck.

Imagine a class with many methods and quite a lot of data. A class that is too
big to understand easily. You need to consider where it can be split—and split
it. A good sign is when a subset of the data and a subset of the methods seem
to go together. Other good signs are subsets of data that usually change together
or are particularly dependent on each other. A useful test is to ask yourself what
would happen if you remove a piece of data or a method. What other fields and
methods would become nonsense?

One sign that often crops up later in development is the way the class is sub-
typed. You may find that subtyping affects only a few features or that some
features need to be subtyped one way and other features a different way.

Chapter 7 Encapsulation182

ptg26261585

Mechanics

Decide how to split the responsibilities of the class.

Create a new child class to express the split-off responsibilities.

If the responsibilities of the original parent class no longer match its name, rename
the parent.

Create an instance of the child class when constructing the parent and add
a link from parent to child.

Use Move Field (207) on each field you wish to move. Test after each move.

Use Move Function (198) to move methods to the new child. Start with lower-
level methods (those being called rather than calling). Test after each move.

Review the interfaces of both classes, remove unneeded methods, change
names to better fit the new circumstances.

Decide whether to expose the new child. If so, consider applying Change
Reference to Value (252) to the child class.

Example

I start with a simple person class:

class Person…
 get name() {return this._name;}
 set name(arg) {this._name = arg;}
 get telephoneNumber() {return `(${this.officeAreaCode}) ${this.officeNumber}`;}
 get officeAreaCode() {return this._officeAreaCode;}
 set officeAreaCode(arg) {this._officeAreaCode = arg;}
 get officeNumber() {return this._officeNumber;}
 set officeNumber(arg) {this._officeNumber = arg;}

Here. I can separate the telephone number behavior into its own class. I start
by defining an empty telephone number class:

class TelephoneNumber {
}

That was easy! Next, I create an instance of telephone number when
constructing the person:

class Person…
 constructor() {
 this._telephoneNumber = new TelephoneNumber();
 }

183Extract Class

ptg26261585

class TelephoneNumber…
 get officeAreaCode() {return this._officeAreaCode;}
 set officeAreaCode(arg) {this._officeAreaCode = arg;}

I then use Move Field (207) on one of the fields.

class Person…
 get officeAreaCode() {return this._telephoneNumber.officeAreaCode;}
 set officeAreaCode(arg) {this._telephoneNumber.officeAreaCode = arg;}

I test, then move the next field.

class TelephoneNumber…
 get officeNumber() {return this._officeNumber;}
 set officeNumber(arg) {this._officeNumber = arg;}

class Person…
 get officeNumber() {return this._telephoneNumber.officeNumber;}
 set officeNumber(arg) {this._telephoneNumber.officeNumber = arg;}

Test again, then move the telephone number method.

class TelephoneNumber…
 get telephoneNumber() {return `(${this.officeAreaCode}) ${this.officeNumber}`;}

class Person…
 get telephoneNumber() {return this._telephoneNumber.telephoneNumber;}

Now I should tidy things up. Having “office” as part of the telephone number
code makes no sense, so I rename them.

class TelephoneNumber…
 get areaCode() {return this._areaCode;}
 set areaCode(arg) {this._areaCode = arg;}

 get number() {return this._number;}
 set number(arg) {this._number = arg;}

class Person…
 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 set officeAreaCode(arg) {this._telephoneNumber.areaCode = arg;}
 get officeNumber() {return this._telephoneNumber.number;}
 set officeNumber(arg) {this._telephoneNumber.number = arg;}

The telephone number method on the telephone number class also doesn’t
make much sense, so I apply Rename Function (124).

class TelephoneNumber…
toString() {return `(${this.areaCode}) ${this.number}`;}

Chapter 7 Encapsulation184

ptg26261585

class Person…
 get telephoneNumber() {return this._telephoneNumber.toString();}

Telephone numbers are generally useful, so I think I’ll expose the new object
to clients. I can replace those “office” methods with accessors for the telephone
number. But this way, the telephone number will work better as a Value Object
[mf-vo], so I would apply Change Reference to Value (252) first (that refactoring’s
example shows how I’d do that for the telephone number).

185Extract Class

ptg26261585

Inline Class
inverse of: Extract Class (182)

class Person {
 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 get officeNumber() {return this._telephoneNumber.number;}
}
class TelephoneNumber {
 get areaCode() {return this._areaCode;}
 get number() {return this._number;}
}

class Person {
 get officeAreaCode() {return this._officeAreaCode;}
 get officeNumber() {return this._officeNumber;}

Motivation

Inline Class is the inverse of Extract Class (182). I use Inline Class if a class is no
longer pulling its weight and shouldn’t be around any more. Often, this is the
result of refactoring that moves other responsibilities out of the class so there is
little left. At that point, I fold the class into another—one that makes most use
of the runt class.

Another reason to use Inline Class is if I have two classes that I want to
refactor into a pair of classes with a different allocation of features. I may find it
easier to first use Inline Class to combine them into a single class, then Extract
Class (182) to make the new separation. This is a general approach when reorga-
nizing things: Sometimes, it’s easier to move elements one at a time from one
context to another, but sometimes it’s better to use an inline refactoring to collapse
the contexts together, then use an extract refactoring to separate them into
different elements.

Chapter 7 Encapsulation186

ptg26261585

Mechanics

In the target class, create functions for all the public functions of the source
class. These functions should just delegate to the source class.

Change all references to source class methods so they use the target class’s
delegators instead. Test after each change.

Move all the functions and data from the source class into the target, testing
after each move, until the source class is empty.

Delete the source class and hold a short, simple funeral service.

Example

Here’s a class that holds a couple of pieces of tracking information for a shipment.

 class TrackingInformation {
 get shippingCompany() {return this._shippingCompany;}
 set shippingCompany(arg) {this._shippingCompany = arg;}
 get trackingNumber() {return this._trackingNumber;}
 set trackingNumber(arg) {this._trackingNumber = arg;}
 get display() {
 return `${this.shippingCompany}: ${this.trackingNumber}`;
 }
 }

It’s used as part of a shipment class.

class Shipment…
 get trackingInfo() {
 return this._trackingInformation.display;
 }
 get trackingInformation() {return this._trackingInformation;}
 set trackingInformation(aTrackingInformation) {
 this._trackingInformation = aTrackingInformation;
 }

While this class may have been worthwhile in the past, I no longer feel it’s
pulling its weight, so I want to inline it into Shipment.

I start by looking at places that are invoking the methods of TrackingInformation.

caller…
 aShipment.trackingInformation.shippingCompany = request.vendor;

I’m going to move all such functions to Shipment, but I do it slightly differently
to how I usually do Move Function (198). In this case, I start by putting a delegating
method into the shipment, and adjusting the client to call that.

187Inline Class

ptg26261585

class Shipment…
 set shippingCompany(arg) {this._trackingInformation.shippingCompany = arg;}

caller…
 aShipment.trackingInformation.shippingCompany = request.vendor;

I do this for all the elements of tracking information that are used by clients.
Once I’ve done that, I can move all the elements of the tracking information over
into the shipment class.

I start by applying Inline Function (115) to the display method.

class Shipment…
 get trackingInfo() {
 return `${this.shippingCompany}: ${this.trackingNumber}`;
 }

I move the shipping company field.

 get shippingCompany() {return this._trackingInformation._shippingCompany;}
 set shippingCompany(arg) {this._trackingInformation._shippingCompany = arg;}

I don’t use the full mechanics for Move Field (207) since in this case I only ref-
erence shippingCompany from Shipment which is the target of the move. I thus don’t
need the steps that put a reference from the source to the target.

I continue until everything is moved over. Once I’ve done that, I can delete
the tracking information class.

class Shipment…
 get trackingInfo() {
 return `${this.shippingCompany}: ${this.trackingNumber}`;
 }
 get shippingCompany() {return this._shippingCompany;}
 set shippingCompany(arg) {this._shippingCompany = arg;}
 get trackingNumber() {return this._trackingNumber;}
 set trackingNumber(arg) {this._trackingNumber = arg;}

Chapter 7 Encapsulation188

ptg26261585

Hide Delegate
inverse of: Remove Middle Man (192)

manager = aPerson.department.manager;

manager = aPerson.manager;

class Person {
 get manager() {return this.department.manager;}

Motivation

One of the keys—if not the key—to good modular design is encapsulation. Encap-
sulation means that modules need to know less about other parts of the system.
Then, when things change, fewer modules need to be told about the change—
which makes the change easier to make.

When we are first taught about object orientation, we are told that encapsulation
means hiding our fields. As we become more sophisticated, we realize there is
more that we can encapsulate.

If I have some client code that calls a method defined on an object in a field
of a server object, the client needs to know about this delegate object. If the
delegate changes its interface, changes propagate to all the clients of the server
that use the delegate. I can remove this dependency by placing a simple delegating
method on the server that hides the delegate. Then any changes I make to the
delegate propagate only to the server and not to the clients.

189Hide Delegate

ptg26261585

Mechanics

For each method on the delegate, create a simple delegating method on the
server.

Adjust the client to call the server. Test after each change.

If no client needs to access the delegate anymore, remove the server’s
accessor for the delegate.

Test.

Example

I start with a person and a department.

class Person…
 constructor(name) {
 this._name = name;
 }
 get name() {return this._name;}
 get department() {return this._department;}
 set department(arg) {this._department = arg;}

class Department…
 get chargeCode() {return this._chargeCode;}
 set chargeCode(arg) {this._chargeCode = arg;}
 get manager() {return this._manager;}
 set manager(arg) {this._manager = arg;}

Some client code wants to know the manager of a person. To do this, it needs
to get the department first.

client code…
 manager = aPerson.department.manager;

This reveals to the client how the department class works and that the depart-
ment is responsible for tracking the manager. I can reduce this coupling by

Chapter 7 Encapsulation190

ptg26261585

hiding the department class from the client. I do this by creating a simple
delegating method on person:

class Person…
 get manager() {return this._department.manager;}

I now need to change all clients of person to use this new method:

client code…
 manager = aPerson.department.manager;

Once I’ve made the change for all methods of department and for all the clients
of person, I can remove the department accessor on person.

191Hide Delegate

ptg26261585

Remove Middle Man
inverse of: Hide Delegate (189)

manager = aPerson.manager;

class Person {
 get manager() {return this.department.manager;}

manager = aPerson.department.manager;

Motivation

In the motivation for Hide Delegate (189), I talked about the advantages of encap-
sulating the use of a delegated object. There is a price for this. Every time the
client wants to use a new feature of the delegate, I have to add a simple delegating
method to the server. After adding features for a while, I get irritated with all
this forwarding. The server class is just a middle man (Middle Man (81)), and
perhaps it’s time for the client to call the delegate directly. (This smell often pops
up when people get overenthusiastic about following the Law of Demeter, which
I’d like a lot more if it were called the Occasionally Useful Suggestion of Demeter.)

It’s hard to figure out what the right amount of hiding is. Fortunately, with
Hide Delegate (189) and Remove Middle Man, it doesn’t matter so much. I can
adjust my code as time goes on. As the system changes, the basis for how much
I hide also changes. A good encapsulation six months ago may be awkward now.
Refactoring means I never have to say I’m sorry—I just fix it.

Chapter 7 Encapsulation192

ptg26261585

Mechanics

Create a getter for the delegate.

For each client use of a delegating method, replace the call to the delegating
method by chaining through the accessor. Test after each replacement.

If all calls to a delegating method are replaced, you can delete the delegating
method.

With automated refactorings, you can use Encapsulate Variable (132) on the delegate
field and then Inline Function (115) on all the methods that use it.

Example

I begin with a person class that uses a linked department object to determine a
manager. (If you’re reading this book sequentially, this example may look eerily
familiar.)

client code…
 manager = aPerson.manager;

class Person…
 get manager() {return this._department.manager;}

class Department…
 get manager() {return this._manager;}

This is simple to use and encapsulates the department. However, if lots of
methods are doing this, I end up with too many of these simple delegations on
the person. That’s when it is good to remove the middle man. First, I make an
accessor for the delegate:

class Person…
 get department() {return this._department;}

Now I go to each client at a time and modify them to use the department
directly.

client code…
 manager = aPerson.department.manager;

Once I’ve done this with all the clients, I can remove the manager method
from Person. I can repeat this process for any other simple delegations on Person.

193Remove Middle Man

ptg26261585

I can do a mixture here. Some delegations may be so common that I’d like to
keep them to make client code easier to work with. There is no absolute reason
why I should either hide a delegate or remove a middle man—particular circum-
stances suggest which approach to take, and reasonable people can differ on
what works best.

If I have automated refactorings, then there’s a useful variation on these steps.
First, I use Encapsulate Variable (132) on department. This changes the manager getter
to use the public department getter:

class Person…
 get manager() {return this.department.manager;}

The change is rather too subtle in JavaScript, but by removing the underscore from department
I’m using the new getter rather than accessing the field directly.

Then I apply Inline Function (115) on the manager method to replace all the
callers at once.

Chapter 7 Encapsulation194

ptg26261585

Substitute Algorithm

function foundPerson(people) {
 for(let i = 0; i < people.length; i++) {
 if (people[i] === "Don") {
 return "Don";
 }
 if (people[i] === "John") {
 return "John";
 }
 if (people[i] === "Kent") {
 return "Kent";
 }
 }
 return "";
}

function foundPerson(people) {
 const candidates = ["Don", "John", "Kent"];
 return people.find(p => candidates.includes(p)) || '';
}

Motivation

I’ve never tried to skin a cat. I’m told there are several ways to do it. I’m sure
some are easier than others. So it is with algorithms. If I find a clearer way to
do something, I replace the complicated way with the clearer way. Refactoring
can break down something complex into simpler pieces, but sometimes I just
reach the point at which I have to remove the whole algorithm and replace it
with something simpler. This occurs as I learn more about the problem and realize
that there’s an easier way to do it. It also happens if I start using a library that
supplies features that duplicate my code.

195Substitute Algorithm

ptg26261585

Sometimes, when I want to change the algorithm to work slightly differently,
it’s easier to start by replacing it with something that would make my change
more straightforward to make.

When I have to take this step, I have to be sure I’ve decomposed the method
as much as I can. Replacing a large, complex algorithm is very difficult; only by
making it simple can I make the substitution tractable.

Mechanics

Arrange the code to be replaced so that it fills a complete function.

Prepare tests using this function only, to capture its behavior.

Prepare your alternative algorithm.

Run static checks.

Run tests to compare the output of the old algorithm to the new one. If they
are the same, you’re done. Otherwise, use the old algorithm for comparison
in testing and debugging.

Chapter 7 Encapsulation196

ptg26261585

So far, the refactorings have been about creating, removing, and renaming program
elements. Another important part of refactoring is moving elements between
contexts. I use Move Function (198) to move functions between classes and other
modules. Fields can move too, with Move Field (207).

I also move individual statements around. I use Move Statements into Function
(213) and Move Statements to Callers (217) to move them in or out of functions,
as well as Slide Statements (223) to move them within a function. Sometimes, I
can take some statements that match an existing function and use Replace Inline
Code with Function Call (222) to remove the duplication.

Two refactorings I often do with loops are Split Loop (227), to ensure a loop does
only one thing, and Replace Loop with Pipeline (231) to get rid of a loop entirely.

And then there’s the favorite refactoring of many a fine programmer: Remove
Dead Code (237). Nothing is as satisfying as applying the digital flamethrower to
superfluous statements.

197

Chapter 8

Moving Features

ptg26261585

Move Function
formerly: Move Method

class Account {
 get overdraftCharge() {...}

class AccountType {
 get overdraftCharge() {...}

Motivation

The heart of a good software design is its modularity—which is my ability to
make most modifications to a program while only having to understand a small
part of it. To get this modularity, I need to ensure that related software elements
are grouped together and the links between them are easy to find and understand.
But my understanding of how to do this isn’t static—as I better understand what
I’m doing, I learn how to best group together software elements. To reflect that
growing understanding, I need to move elements around.

All functions live in some context; it may be global, but usually it’s some form
of a module. In an object-oriented program, the core modular context is a class.
Nesting a function within another creates another common context. Different
languages provide varied forms of modularity, each creating a context for a
function to live in.

One of the most straightforward reasons to move a function is when it refer-
ences elements in other contexts more than the one it currently resides in.
Moving it together with those elements often improves encapsulation, allowing
other parts of the software to be less dependent on the details of this module.

Similarly, I may move a function because of where its callers live, or where I
need to call it from in my next enhancement. A function defined as a helper inside
another function may have value on its own, so it’s worth moving it to somewhere
more accessible. A method on a class may be easier for me to use if shifted to
another.

Chapter 8 Moving Features198

ptg26261585

Deciding to move a function is rarely an easy decision. To help me decide, I
examine the current and candidate contexts for that function. I need to look at
what functions call this one, what functions are called by the moving function,
and what data that function uses. Often, I see that I need a new context for a
group of functions and create one with Combine Functions into Class (144) or Extract
Class (182). Although it can be difficult to decide where the best place for a
function is, the more difficult this choice, often the less it matters. I find it valuable
to try working with functions in one context, knowing I’ll learn how well they
fit, and if they don’t fit I can always move them later.

Mechanics

Examine all the program elements used by the chosen function in its current
context. Consider whether they should move too.

If I find a called function that should also move, I usually move it first. That way,
moving a clusters of functions begins with the one that has the least dependency
on the others in the group.

If a high-level function is the only caller of subfunctions, then you can inline those
functions into the high-level method, move, and reextract at the destination.

Check if the chosen function is a polymorphic method.

If I’m in an object-oriented language, I have to take account of super- and subclass
declarations.

Copy the function to the target context. Adjust it to fit in its new home.

If the body uses elements in the source context, I need to either pass those
elements as parameters or pass a reference to that source context.

Moving a function often means I need to come up with a different name that
works better in the new context.

Perform static analysis.

Figure out how to reference the target function from the source context.

Turn the source function into a delegating function.

Test.

Consider Inline Function (115) on the source function.

The source function can stay indefinitely as a delegating function. But if its callers
can just as easily reach the target directly, then it’s better to remove the
middle man.

199Move Function

ptg26261585

Example: Moving a Nested Function to Top Level

I’ll begin with a function that calculates the total distance for a GPS track record.

 function trackSummary(points) {
 const totalTime = calculateTime();
 const totalDistance = calculateDistance();
 const pace = totalTime / 60 / totalDistance ;
 return {
 time: totalTime,
 distance: totalDistance,
 pace: pace
 };

 function calculateDistance() {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;
 }

 function distance(p1,p2) { ... }
 function radians(degrees) { ... }
 function calculateTime() { ... }

 }

I’d like to move calculateDistance to the top level so I can calculate distances for
tracks without all the other parts of the summary.

I begin by copying the function to the top level.

 function trackSummary(points) {
 const totalTime = calculateTime();
 const totalDistance = calculateDistance();
 const pace = totalTime / 60 / totalDistance ;
 return {
 time: totalTime,
 distance: totalDistance,
 pace: pace
 };

 function calculateDistance() {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;
 }
 ...

Chapter 8 Moving Features200

ptg26261585

 function distance(p1,p2) { ... }
 function radians(degrees) { ... }
 function calculateTime() { ... }

 }

 function top_calculateDistance() {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;
 }

When I copy a function like this, I like to change the name so I can distinguish
them both in the code and in my head. I don’t want to think about what the
right name should be right now, so I create a temporary name.

The program still works, but my static analysis is rightly rather upset. The new
function has two undefined symbols: distance and points. The natural way to deal
with points is to pass it in as a parameter.

 function top_calculateDistance(points) {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;
 }

I could do the same with distance, but perhaps it makes sense to move it together
with calculateDistance. Here’s the relevant code:

function trackSummary…
 function distance(p1,p2) {
 // haversine formula see http://www.movable-type.co.uk/scripts/latlong.html
 const EARTH_RADIUS = 3959; // in miles
 const dLat = radians(p2.lat) - radians(p1.lat);
 const dLon = radians(p2.lon) - radians(p1.lon);
 const a = Math.pow(Math.sin(dLat / 2),2)
 + Math.cos(radians(p2.lat))
 * Math.cos(radians(p1.lat))
 * Math.pow(Math.sin(dLon / 2), 2);
 const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
 return EARTH_RADIUS * c;
 }
 function radians(degrees) {
 return degrees * Math.PI / 180;
 }

I can see that distance only uses radians and radians doesn’t use anything inside
its current context. So rather than pass the functions, I might as well move them

201Move Function

ptg26261585

too. I can make a small step in this direction by moving them from their current
context to nest them inside the nested calculateDistance.

 function trackSummary(points) {
 const totalTime = calculateTime();
 const totalDistance = calculateDistance();
 const pace = totalTime / 60 / totalDistance ;
 return {
 time: totalTime,
 distance: totalDistance,
 pace: pace
 };

 function calculateDistance() {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;

 function distance(p1,p2) { ... }
 function radians(degrees) { ... }

 }

By doing this, I can use both static analysis and testing to tell me if there
are any complications. In this case all is well, so I can copy them over to
top_calculateDistance.

 function top_calculateDistance(points) {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;

 function distance(p1,p2) { ... }
 function radians(degrees) { ... }

 }

Again, the copy doesn’t change how the program runs, but does give me an
opportunity for more static analysis. Had I not spotted that distance calls radians,
the linter would have caught it at this step.

Now that I have prepared the table, it’s time for the major change—the body
of the original calculateDistance will now call top_calculateDistance:

Chapter 8 Moving Features202

ptg26261585

 function trackSummary(points) {
 const totalTime = calculateTime();
 const totalDistance = calculateDistance();
 const pace = totalTime / 60 / totalDistance ;
 return {
 time: totalTime,
 distance: totalDistance,
 pace: pace
 };

 function calculateDistance() {
 return top_calculateDistance(points);
 }

This is the crucial time to run tests to fully test that the moved function has
bedded down in its new home.

With that done, it’s like unpacking the boxes after moving house. The first
thing is to decide whether to keep the original function that’s just delegating or
not. In this case, there are few callers and, as usual with nested functions, they
are highly localized. So I’m happy to get rid of it.

 function trackSummary(points) {
 const totalTime = calculateTime();
 const totalDistance = top_calculateDistance(points);
 const pace = totalTime / 60 / totalDistance ;
 return {
 time: totalTime,
 distance: totalDistance,
 pace: pace
 };

Now is also a good time to think about what I want the name to be. Since the
top-level function has the highest visibility, I’d like it to have the best name.
totalDistance seems like a good choice. I can’t use that immediately since it will be
shadowed by the variable inside trackSummary—but I don’t see any reason to keep
that anyway, so I use Inline Variable (123) on it.

 function trackSummary(points) {
 const totalTime = calculateTime();
 const pace = totalTime / 60 / totalDistance(points) ;
 return {
 time: totalTime,
 distance: totalDistance(points),
 pace: pace
 };

203Move Function

ptg26261585

 function totalDistance(points) {
 let result = 0;
 for (let i = 1; i < points.length; i++) {
 result += distance(points[i-1], points[i]);
 }
 return result;

If I’d had the need to keep the variable, I’d have renamed it to something like
totalDistanceCache or distance.

Since the functions for distance and radians don’t depend on anything inside
totalDistance, I prefer to move them to top level too, putting all four functions at
the top level.

function trackSummary(points) { ... }
function totalDistance(points) { ... }
function distance(p1,p2) { ... }
function radians(degrees) { ... }

Some people would prefer to keep distance and radians inside totalDistance in order
to restrict their visibility. In some languages that may be a consideration, but
with ES 2015, JavaScript has an excellent module mechanism that’s the best tool
for controlling function visibility. In general, I’m wary of nested functions—they
too easily set up hidden data interrelationships that can get hard to follow.

Example: Moving between Classes

To illustrate this variety of Move Function, I’ll start here:

class Account…
 get bankCharge() {
 let result = 4.5;
 if (this._daysOverdrawn > 0) result += this.overdraftCharge;
 return result;
 }

 get overdraftCharge() {
 if (this.type.isPremium) {
 const baseCharge = 10;
 if (this.daysOverdrawn <= 7)
 return baseCharge;
 else
 return baseCharge + (this.daysOverdrawn - 7) * 0.85;
 }
 else
 return this.daysOverdrawn * 1.75;
 }

Coming up are changes that lead to different types of account having different
algorithms for determining the charge. Thus it seems natural to move overdraftCharge
to the account type class.

Chapter 8 Moving Features204

ptg26261585

The first step is to look at the features that the overdraftCharge method uses and
consider whether it is worth moving a batch of methods together. In this case I
need the daysOverdrawn method to remain on the account class, because that will
vary with individual accounts.

Next, I copy the method body over to the account type and get it to fit.

class AccountType…
 overdraftCharge(daysOverdrawn) {
 if (this.isPremium) {
 const baseCharge = 10;
 if (daysOverdrawn <= 7)
 return baseCharge;
 else
 return baseCharge + (daysOverdrawn - 7) * 0.85;
 }
 else
 return daysOverdrawn * 1.75;
 }

In order to get the method to fit in its new location, I need to deal with two
call targets that change their scope. isPremium is now a simple call on this. With
daysOverdrawn I have to decide—do I pass the value or do I pass the account? For
the moment, I just pass the simple value but I may well change this in the future
if I require more than just the days overdrawn from the account—especially if
what I want from the account varies with the account type.

Next, I replace the original method body with a delegating call.

class Account…
 get bankCharge() {
 let result = 4.5;
 if (this._daysOverdrawn > 0) result += this.overdraftCharge;
 return result;
 }

 get overdraftCharge() {
 return this.type.overdraftCharge(this.daysOverdrawn);
 }

Then comes the decision of whether to leave the delegation in place or to inline
overdraftCharge. Inlining results in:

class Account…
 get bankCharge() {
 let result = 4.5;
 if (this._daysOverdrawn > 0)
 result += this.type.overdraftCharge(this.daysOverdrawn);
 return result;
 }

205Move Function

ptg26261585

In the earlier steps, I passed daysOverdrawn as a parameter—but if there’s a lot of
data from the account to pass, I might prefer to pass the account itself.

class Account…
 get bankCharge() {
 let result = 4.5;
 if (this._daysOverdrawn > 0) result += this.overdraftCharge;
 return result;
 }

 get overdraftCharge() {
 return this.type.overdraftCharge(this);
 }

class AccountType…
 overdraftCharge(account) {
 if (this.isPremium) {
 const baseCharge = 10;
 if (account.daysOverdrawn <= 7)
 return baseCharge;
 else
 return baseCharge + (account.daysOverdrawn - 7) * 0.85;
 }
 else
 return account.daysOverdrawn * 1.75;
 }

Chapter 8 Moving Features206

ptg26261585

Move Field

class Customer {
 get plan() {return this._plan;}
 get discountRate() {return this._discountRate;}

class Customer {
 get plan() {return this._plan;}
 get discountRate() {return this.plan.discountRate;}

Motivation

Programming involves writing a lot of code that implements behavior—but the
strength of a program is really founded on its data structures. If I have a good
set of data structures that match the problem, then my behavior code is simple
and straightforward. But poor data structures lead to lots of code whose job is
merely dealing with the poor data. And it’s not just messier code that’s harder
to understand; it also means the data structures obscure what the program is
doing.

So, data structures are important—but like most aspects of programming they
are hard to get right. I do make an initial analysis to figure out the best data
structures, and I’ve found that experience and techniques like domain-driven
design have improved my ability to do that. But despite all my skill and experi-
ence, I still find that I frequently make mistakes in that initial design. In the
process of programming, I learn more about the problem domain and my data
structures. A design decision that is reasonable and correct one week can become
wrong in another.

As soon as I realize that a data structure isn’t right, it’s vital to change it. If I
leave my data structures with their blemishes, those blemishes will confuse my
thinking and complicate my code far into the future.

I may seek to move data because I find I always need to pass a field from one
record whenever I pass another record to a function. Pieces of data that are always
passed to functions together are usually best put in a single record in order to

207Move Field

ptg26261585

clarify their relationship. Change is also a factor; if a change in one record causes
a field in another record to change too, that’s a sign of a field in the wrong place.
If I have to update the same field in multiple structures, that’s a sign that it should
move to another place where it only needs to be updated once.

I usually do Move Field in the context of a broader set of changes. Once I’ve
moved a field, I find that many of the users of the field are better off accessing
that data through the target object rather than the original source. I then
change these with later refactorings. Similarly, I may find that I can’t do Move
Field at the moment due to the way the data is used. I need to refactor some
usage patterns first, then do the move.

In my description so far, I’m saying “record,” but all this is true of classes and
objects too. A class is a record type with attached functions—and these need to
be kept healthy just as much as any other data. The attached functions do make
it easier to move data around, since the data is encapsulated behind accessor
methods. I can move the data, change the accessors, and clients of the accessors
will still work. So, this is a refactoring that’s easier to do if you have classes, and
my description below makes that assumption. If I’m using bare records that don’t
support encapsulation, I can still make a change like this, but it is more tricky.

Mechanics

Ensure the source field is encapsulated.

Test.

Create a field (and accessors) in the target.

Run static checks.

Ensure there is a reference from the source object to the target object.

An existing field or method may give you the target. If not, see if you can easily
create a method that will do so. Failing that, you may need to create a new field
in the source object that can store the target. This may be a permanent change,
but you can also do it temporarily until you have done enough refactoring in the
broader context.

Adjust accessors to use the target field.

If the target is shared between source objects, consider first updating the setter
to modify both target and source fields, followed by Introduce Assertion (302) to
detect inconsistent updates. Once you determine all is well, finish changing the
accessors to use the target field.

Test.

Chapter 8 Moving Features208

ptg26261585

Remove the source field.

Test.

Example

I’m starting here with this customer and contract:

class Customer…
 constructor(name, discountRate) {
 this._name = name;
 this._discountRate = discountRate;
 this._contract = new CustomerContract(dateToday());
 }
 get discountRate() {return this._discountRate;}
 becomePreferred() {
 this._discountRate += 0.03;
 // other nice things
 }
 applyDiscount(amount) {
 return amount.subtract(amount.multiply(this._discountRate));
 }

class CustomerContract…
 constructor(startDate) {
 this._startDate = startDate;
 }

I want to move the discount rate field from the customer to the customer
contract.

The first thing I need to use is Encapsulate Variable (132) to encapsulate access
to the discount rate field.

class Customer…
 constructor(name, discountRate) {
 this._name = name;
 this._setDiscountRate(discountRate);
 this._contract = new CustomerContract(dateToday());
 }
 get discountRate() {return this._discountRate;}
_setDiscountRate(aNumber) {this._discountRate = aNumber;}

 becomePreferred() {
 this._setDiscountRate(this.discountRate + 0.03);
 // other nice things
 }
 applyDiscount(amount) {
 return amount.subtract(amount.multiply(this.discountRate));
 }

209Move Field

ptg26261585

I use a method to update the discount rate, rather than a property setter, as I
don’t want to make a public setter for the discount rate.

I add a field and accessors to the customer contract.

class CustomerContract…
 constructor(startDate, discountRate) {
 this._startDate = startDate;
 this._discountRate = discountRate;
 }
 get discountRate() {return this._discountRate;}
 set discountRate(arg) {this._discountRate = arg;}

I now modify the accessors on customer to use the new field. When I did that,
I got an error: “Cannot set property ’discountRate’ of undefined”. This was because
_setDiscountRate was called before I created the contract object in the constructor.
To fix that, I first reverted to the previous state, then used Slide Statements (223) to
move the _setDiscountRate after creating the contract.

class Customer…
 constructor(name, discountRate) {
 this._name = name;
 this._setDiscountRate(discountRate);
 this._contract = new CustomerContract(dateToday());
 }

I tested that, then changed the accessors again to use the contract.

class Customer…
 get discountRate() {return this._contract.discountRate;}
 _setDiscountRate(aNumber) {this._contract.discountRate = aNumber;}

Since I’m using JavaScript, there is no declared source field, so I don’t need to
remove anything further.

Changing a Bare Record
This refactoring is generally easier with objects, since encapsulation provides a
natural way to wrap data access in methods. If I have many functions accessing
a bare record, then, while it’s still a valuable refactoring, it is decidedly more
tricky.

I can create accessor functions and modify all the reads and writes to use them.
If the field that’s being moved is immutable, I can update both the source and
the target fields when I set its value and gradually migrate reads. Still, if possible,
my first move would be to use Encapsulate Record (162) to turn the record into a
class so I can make the change more easily.

Chapter 8 Moving Features210

ptg26261585

Example: Moving to a Shared Object

Now, let’s consider a different case. Here’s an account with an interest rate:

class Account…
 constructor(number, type, interestRate) {
 this._number = number;
 this._type = type;
 this._interestRate = interestRate;
 }
 get interestRate() {return this._interestRate;}

class AccountType…
 constructor(nameString) {
 this._name = nameString;
 }

I want to change things so that an account’s interest rate is determined from
its account type.

The access to the interest rate is already nicely encapsulated, so I’ll just create
the field and an appropriate accessor on the account type.

class AccountType…
 constructor(nameString, interestRate) {
 this._name = nameString;
 this._interestRate = interestRate;
 }
 get interestRate() {return this._interestRate;}

But there is a potential problem when I update the accesses from account. Before
this refactoring, each account had its own interest rate. Now, I want all accounts to
share the interest rates of their account type. If all the accounts of the same type
already have the same interest rate, then there’s no change in observable behavior,
so I’m fine with the refactoring. But if there’s an account with a different interest
rate, it’s no longer a refactoring. If my account data is held in a database, I should
check the database to ensure that all my accounts have the rate matching their
type. I can also Introduce Assertion (302) in the account class.

class Account…
 constructor(number, type, interestRate) {
 this._number = number;
 this._type = type;
 assert(interestRate === this._type.interestRate);
 this._interestRate = interestRate;
 }
 get interestRate() {return this._interestRate;}

211Move Field

ptg26261585

I might run the system for a while with this assertion in place to see if I get
an error. Or, instead of adding an assertion, I might log the problem. Once I’m
confident that I’m not introducing an observable change, I can change the access,
removing the update from the account completely.

class Account…
 constructor(number, type) {
 this._number = number;
 this._type = type;
 }
 get interestRate() {return this._type.interestRate;}

Chapter 8 Moving Features212

ptg26261585

Move Statements into Function
inverse of: Move Statements to Callers (217)

result.push(`<p>title: ${person.photo.title}</p>`);
result.concat(photoData(person.photo));

function photoData(aPhoto) {
 return [
 `<p>location: ${aPhoto.location}</p>`,
 `<p>date: ${aPhoto.date.toDateString()}</p>`,
];
}

result.concat(photoData(person.photo));

function photoData(aPhoto) {
 return [
 `<p>title: ${aPhoto.title}</p>`,
 `<p>location: ${aPhoto.location}</p>`,
 `<p>date: ${aPhoto.date.toDateString()}</p>`,
];
}

Motivation

Removing duplication is one of the best rules of thumb of healthy code. If I see
the same code executed every time I call a particular function, I look to com-
bine that repeating code into the function itself. That way, any future modifications
to the repeating code can be done in one place and used by all the callers. Should
the code vary in the future, I can easily move it (or some of it) out again with
Move Statements to Callers (217).

213Move Statements into Function

ptg26261585

I move statements into a function when I can best understand these statements
as part of the called function. If they don’t make sense as part of the called
function, but still should be called with it, I’ll simply use Extract Function (106)
on the statements and the called function. That’s essentially the same process as
I describe below, but without the inline and rename steps. It’s not unusual to do
that and then, after later reflection, carry out those final steps.

Mechanics

If the repetitive code isn’t adjacent to the call of the target function, use Slide
Statements (223) to get it adjacent.

If the target function is only called by the source function, just cut the code
from the source, paste it into the target, test, and ignore the rest of these
mechanics.

If you have more callers, use Extract Function (106) on one of the call sites
to extract both the call to the target function and the statements you wish to
move into it. Give it a name that’s transient, but easy to grep.

Convert every other call to use the new function. Test after each conversion.

When all the original calls use the new function, use Inline Function (115) to
inline the original function completely into the new function, removing the
original function.

Rename Function (124) to change the name of the new function to the same
name as the original function.

Or to a better name, if there is one.

Example

I’ll start with this code to emit HTML for data about a photo:

 function renderPerson(outStream, person) {
 const result = [];
 result.push(`<p>${person.name}</p>`);
 result.push(renderPhoto(person.photo));
 result.push(`<p>title: ${person.photo.title}</p>`);
 result.push(emitPhotoData(person.photo));
 return result.join("\n");
 }

Chapter 8 Moving Features214

ptg26261585

 function photoDiv(p) {
 return [
 "<div>",
 `<p>title: ${p.title}</p>`,
 emitPhotoData(p),
 "</div>",
].join("\n");
 }

 function emitPhotoData(aPhoto) {
 const result = [];
 result.push(`<p>location: ${aPhoto.location}</p>`);
 result.push(`<p>date: ${aPhoto.date.toDateString()}</p>`);
 return result.join("\n");
 }

This code shows two calls to emitPhotoData, each preceded by a line of code that
is semantically equivalent. I’d like to remove this duplication by moving the
title printing into emitPhotoData. If I had just the one caller, I would just cut and
paste the code, but the more callers I have, the more I’m inclined to use a safer
procedure.

I begin by using Extract Function (106) on one of the callers. I’m extracting the
statements I want to move into emitPhotoData, together with the call to emitPhotoData
itself.

 function photoDiv(p) {
 return [
 "<div>",
 zznew(p),
 "</div>",
].join("\n");
 }

 function zznew(p) {
 return [
 `<p>title: ${p.title}</p>`,
 emitPhotoData(p),
].join("\n");
 }

I can now look at the other callers of emitPhotoData and, one by one, replace the
calls and the preceding statements with calls to the new function.

 function renderPerson(outStream, person) {
 const result = [];
 result.push(`<p>${person.name}</p>`);
 result.push(renderPhoto(person.photo));
 result.push(zznew(person.photo));
 return result.join("\n");
 }

215Move Statements into Function

ptg26261585

Now that I’ve done all the callers, I use Inline Function (115) on emitPhotoData:

 function zznew(p) {
 return [
 `<p>title: ${p.title}</p>`,
 `<p>location: ${p.location}</p>`,
 `<p>date: ${p.date.toDateString()}</p>`,
].join("\n");
 }

and finish with Rename Function (124):

 function renderPerson(outStream, person) {
 const result = [];
 result.push(`<p>${person.name}</p>`);
 result.push(renderPhoto(person.photo));
 result.push(emitPhotoData(person.photo));
 return result.join("\n");
 }

 function photoDiv(aPhoto) {
 return [
 "<div>",

emitPhotoData(aPhoto),
 "</div>",
].join("\n");
 }

 function emitPhotoData(aPhoto) {
 return [
 `<p>title: ${aPhoto.title}</p>`,
 `<p>location: ${aPhoto.location}</p>`,
 `<p>date: ${aPhoto.date.toDateString()}</p>`,
].join("\n");
 }

I also make the parameter names fit my convention while I’m at it.

Chapter 8 Moving Features216

ptg26261585

Move Statements to Callers
inverse of: Move Statements into Function (213)

emitPhotoData(outStream, person.photo);

function emitPhotoData(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
}

emitPhotoData(outStream, person.photo);
outStream.write(`<p>location: ${person.photo.location}</p>\n`);

function emitPhotoData(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
}

Motivation

Functions are the basic building block of the abstractions we build as program-
mers. And, as with any abstraction, we don’t always get the boundaries right. As
a code base changes its capabilities—as most useful software does—we often find
our abstraction boundaries shift. For functions, that means that what might once
have been a cohesive, atomic unit of behavior becomes a mix of two or more
different things.

One trigger for this is when common behavior used in several places needs to
vary in some of its calls. Now, we need to move the varying behavior out of the
function to its callers. In this case, I’ll use Slide Statements (223) to get the varying
behavior to the beginning or end of the function and then Move Statements to
Callers. Once the varying code is in the caller, I can change it when necessary.

217Move Statements to Callers

ptg26261585

Move Statements to Callers works well for small changes, but sometimes the
boundaries between caller and callee need complete reworking. In that case, my
best move is to use Inline Function (115) and then slide and extract new functions
to form better boundaries.

Mechanics

In simple circumstances, where you have only one or two callers and a
simple function to call from, just cut the first line from the called function
and paste (and perhaps fit) it into the callers. Test and you’re done.

Otherwise, apply Extract Function (106) to all the statements that you don’t
wish to move; give it a temporary but easily searchable name.

If the function is a method that is overridden by subclasses, do the extraction on
all of them so that the remaining method is identical in all classes. Then remove
the subclass methods.

Use Inline Function (115) on the original function.

Apply Change Function Declaration (124) on the extracted function to rename
it to the original name.

Or to a better name, if you can think of one.

Example

Here’s a simple case: a function with two callers.

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);

emitPhotoData(outStream, person.photo);
 }

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");

emitPhotoData(outStream, p);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
 }

Chapter 8 Moving Features218

ptg26261585

I need to modify the software so that listRecentPhotos renders the location infor-
mation differently while renderPerson stays the same. To make this change easier,
I’ll use Move Statements to Callers on the final line.

Usually, when faced with something this simple, I’ll just cut the last line from
renderPerson and paste it below the two calls. But since I’m explaining what to do
in more tricky cases, I’ll go through the more elaborate but safer procedure.

My first step is to use Extract Function (106) on the code that will remain in
emitPhotoData.

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);
 emitPhotoData(outStream, person.photo);
 }

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");
 emitPhotoData(outStream, p);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 zztmp(outStream, photo);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
 }

 function zztmp(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 }

Usually, the name of the extracted function is only temporary, so I don’t worry
about coming up with anything meaningful. However, it is helpful to use
something that’s easy to grep. I can test at this point to ensure the code works
over the function call boundary.

Now I use Inline Function (115), one call at a time. I start with renderPerson.

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);
 zztmp(outStream, person.photo);
 outStream.write(`<p>location: ${person.photo.location}</p>\n`);
 }

219Move Statements to Callers

ptg26261585

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");
 emitPhotoData(outStream, p);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 zztmp(outStream, photo);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
 }

 function zztmp(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 }

I test again to ensure this call is working properly, then move onto the next.

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);
 zztmp(outStream, person.photo);
 outStream.write(`<p>location: ${person.photo.location}</p>\n`);
 }

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");
 zztmp(outStream, p);
 outStream.write(`<p>location: ${p.location}</p>\n`);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 zztmp(outStream, photo);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
 }

 function zztmp(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 }

Then I can delete the outer function, completing Inline Function (115).

Chapter 8 Moving Features220

ptg26261585

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);
 zztmp(outStream, person.photo);
 outStream.write(`<p>location: ${person.photo.location}</p>\n`);
 }

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");
 zztmp(outStream, p);
 outStream.write(`<p>location: ${p.location}</p>\n`);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 zztmp(outStream, photo);
 outStream.write(`<p>location: ${photo.location}</p>\n`);
 }

 function zztmp(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 }

I then rename zztmp back to the original name.

 function renderPerson(outStream, person) {
 outStream.write(`<p>${person.name}</p>\n`);
 renderPhoto(outStream, person.photo);

emitPhotoData(outStream, person.photo);
 outStream.write(`<p>location: ${person.photo.location}</p>\n`);
 }

 function listRecentPhotos(outStream, photos) {
 photos
 .filter(p => p.date > recentDateCutoff())
 .forEach(p => {
 outStream.write("<div>\n");

emitPhotoData(outStream, p);
 outStream.write(`<p>location: ${p.location}</p>\n`);
 outStream.write("</div>\n");
 });
 }

 function emitPhotoData(outStream, photo) {
 outStream.write(`<p>title: ${photo.title}</p>\n`);
 outStream.write(`<p>date: ${photo.date.toDateString()}</p>\n`);
 }

221Move Statements to Callers

ptg26261585

Replace Inline Code with Function Call

let appliesToMass = false;
for(const s of states) {
 if (s === "MA") appliesToMass = true;
}

appliesToMass = states.includes("MA");

Motivation

Functions allow me to package up bits of behavior. This is useful for understand-
ing—a named function can explain the purpose of the code rather than its me-
chanics. It’s also valuable to remove duplication: Instead of writing the same code
twice, I just call the function. Then, should I need to change the function’s imple-
mentation, I don’t have to track down similar-looking code to update all the
changes. (I may have to look at the callers, to see if they should all use the new
code, but that’s both less common and much easier.)

If I see inline code that’s doing the same thing that I have in an existing func-
tion, I’ll usually want to replace that inline code with a function call. The exception
is if I consider the similarity to be coincidental—so that, if I change the function
body, I don’t expect the behavior in this inline code to change. A guide to this
is the name of the function. A good name should make sense in place of inline
code I have. If the name doesn’t make sense, that may be because it’s a poor
name (in which case I use Rename Function (124) to fix it) or because the function’s
purpose is different to what I want in this case—so I shouldn’t call it.

I find it particularly satisfying to do this with calls to library functions—that
way, I don’t even have to write the function body.

Mechanics

Replace the inline code with a call to the existing function.

Test.

Chapter 8 Moving Features222

ptg26261585

Slide Statements
formerly: Consolidate Duplicate Conditional Fragments

const pricingPlan = retrievePricingPlan();
const order = retreiveOrder();
let charge;
const chargePerUnit = pricingPlan.unit;

const pricingPlan = retrievePricingPlan();
const chargePerUnit = pricingPlan.unit;
const order = retreiveOrder();
let charge;

Motivation

Code is easier to understand when things that are related to each other appear
together. If several lines of code access the same data structure, it’s best for them
to be together rather than intermingled with code accessing other data structures.
At its simplest, I use Slide Statements to keep such code together. A very common
case of this is declaring and using variables. Some people like to declare all their
variables at the top of a function. I prefer to declare the variable just before I
first use it.

Usually, I move related code together as a preparatory step for another refac-
toring, often an Extract Function (106). Putting related code into a clearly separated
function is a better separation than just moving a set of lines together, but I can’t
do the Extract Function (106) unless the code is together in the first place.

Mechanics

Identify the target position to move the fragment to. Examine statements
between source and target to see if there is interference for the candidate
fragment. Abandon action if there is any interference.

A fragment cannot slide backwards earlier than any element it references is
declared.

223Slide Statements

ptg26261585

A fragment cannot slide forwards beyond any element that references it.

A fragment cannot slide over any statement that modifies an element it references.

A fragment that modifies an element cannot slide over any other element that
references the modified element.

Cut the fragment from the source and paste into the target position.

Test.

If the test fails, try breaking down the slide into smaller steps. Either slide over
less code or reduce the amount of code in the fragment you’re moving.

Example

When sliding code fragments, there are two decisions involved: what slide I’d
like to do and whether I can do it. The first decision is very context-specific. On
the simplest level, I like to declare elements close to where I use them, so I’ll
often slide a declaration down to its usage. But almost always I slide some code
because I want to do another refactoring—perhaps to get a clump of code together
to Extract Function (106).

Once I have a sense of where I’d like to move some code, the next part is de-
ciding if I can do it. This involves looking at the code I’m sliding and the code
I’m sliding over: Do they interfere with each other in a way that would change
the observable behavior of the program?

Consider the following fragment of code:

 1 const pricingPlan = retrievePricingPlan();
 2 const order = retreiveOrder();
 3 const baseCharge = pricingPlan.base;
 4 let charge;
 5 const chargePerUnit = pricingPlan.unit;
 6 const units = order.units;
 7 let discount;
 8 charge = baseCharge + units * chargePerUnit;
 9 let discountableUnits = Math.max(units - pricingPlan.discountThreshold, 0);
10 discount = discountableUnits * pricingPlan.discountFactor;
11 if (order.isRepeat) discount += 20;
12 charge = charge - discount;
13 chargeOrder(charge);

The first seven lines are declarations, and it’s relatively easy to move these.
For example, I may want to move all the code dealing with discounts together,
which would involve moving line 7 (`let discount`) to above line 10 (`discount = ...`).
Since a declaration has no side effects and refers to no other variable, I can
safely move this forwards as far as the first line that references discount itself. This
is also a common move—if I want to use Extract Function (106) on the discount
logic, I’ll need to move the declaration down first.

Chapter 8 Moving Features224

ptg26261585

I do similar analysis with any code that doesn’t have side effects. So I can take
line 2 (`const order = ...`) and move it down to above line 6 (`const units = ...`)
without trouble.

In this case, I’m also helped by the fact that the code I’m moving over doesn’t
have side effects either. Indeed, I can freely rearrange code that lacks side effects
to my heart’s content, which is one of the reasons why wise programmers prefer to
use side-effect-free code as much as possible.

There is a wrinkle here, however. How do I know that line 2 is side-effect-free?
To be sure, I’d need to look inside retrieveOrder() to ensure there are no side
effects there (and inside any functions it calls, and inside any functions its func-
tions call, and so on). In practice, when working on my own code, I know that
I generally follow the Command-Query Separation [mf-cqs] principle, so any
function that returns a value is free of side effects. But I can only be confident
of that because I know the code base; if I were working in an unknown code
base, I’d have to be more cautious. But I do try to follow the Command-Query
Separation in my own code because it’s so valuable to know that code is free of
side effects.

When sliding code that has a side effect, or sliding over code with side effects,
I have to be much more careful. What I’m looking for is interference between
the two code fragments. So, let’s say I want to slide line 11 (`if (order.isRepeat) ...`)
down to the end. I’m prevented from doing that by line 12 because it references
the variable whose state I’m changing in line 11. Similarly, I can’t take line 13
(`chargeOrder(charge)`) and move it up because line 12 modifies some state that line 13
references. However, I can slide line 8 (`charge = baseCharge + ...`) over lines 9–11
because there they don’t modify any common state.

The most straightforward rule to follow is that I can’t slide one fragment of
code over another if any data that both fragments refer to is modified by either
one. But that’s not a comprehensive rule; I can happily slide either of the following
two lines over the other:

a = a + 10;
a = a + 5;

But judging whether a slide is safe means I have to really understand the
operations involved and how they compose.

Since I need to worry so much about updating state, I look to remove as much
of it as I can. So with this code, I’d be looking to apply Split Variable (240) on
charge before I indulge in any sliding around of that code.

Here, the analysis is relatively simple because I’m mostly just modifying local
variables. With more complex data structures, it’s much harder to be sure when
I get interference. So tests play an important role: Slide the fragment, run tests,
see if things break. If my test coverage is good, I can feel happy with the
refactoring. But if tests aren’t reliable, I need to be more wary—or, more likely,
to improve the tests for the code I’m working on.

225Slide Statements

ptg26261585

The most important consequence of a test failure after a slide is to use smaller
slides: Instead of sliding over ten lines, I’ll just pick five, or slide up to what I
reckon is a dangerous line. It may also mean that the slide isn’t worth it, and
I need to work on something else first.

Example: Sliding with Conditionals

I can also do slides with conditionals. This will either involve removing duplicate
logic when I slide out of a conditional, or adding duplicate logic when I slide in.

Here’s a case where I have the same statements in both legs of a conditional:

let result;
if (availableResources.length === 0) {
 result = createResource();
 allocatedResources.push(result);
} else {
 result = availableResources.pop();
 allocatedResources.push(result);
}
return result;

I can slide these out of the conditional, in which case they turn into a single
statement outside of the conditional block.

let result;
if (availableResources.length === 0) {
 result = createResource();
} else {
 result = availableResources.pop();
}
allocatedResources.push(result);
return result;

In the reverse case, sliding a fragment into a conditional means repeating it in
every leg of the conditional.

Further Reading

I’ve seen an almost identical refactoring under the name of Swap Statement
[wake-swap]. Swap Statement moves adjacent fragments, but it only works with
single-statement fragments. You can think of it as Slide Statements where both
the sliding fragment and the slid-over fragment are single statements. This
refactoring appeals to me; after all, I’m always going on about taking small
steps—steps that may seem ridiculously small to those new to refactoring.

But I ended up writing this refactoring with larger fragments because that is
what I do. I only move one statement at a time if I’m having difficulty with a
larger slide, and I rarely run into problems with larger slides. With more messy
code, however, smaller slides end up being easier.

Chapter 8 Moving Features226

ptg26261585

Split Loop

let averageAge = 0;
let totalSalary = 0;
for (const p of people) {
 averageAge += p.age;
 totalSalary += p.salary;
}
averageAge = averageAge / people.length;

let totalSalary = 0;
for (const p of people) {
 totalSalary += p.salary;
}

let averageAge = 0;
for (const p of people) {
 averageAge += p.age;
}
averageAge = averageAge / people.length;

Motivation

You often see loops that are doing two different things at once just because they
can do that with one pass through a loop. But if you’re doing two different
things in the same loop, then whenever you need to modify the loop you have

227Split Loop

ptg26261585

to understand both things. By splitting the loop, you ensure you only need to
understand the behavior you need to modify.

Splitting a loop can also make it easier to use. A loop that calculates a single
value can just return that value. Loops that do many things need to return
structures or populate local variables. I frequently follow a sequence of Split Loop
followed by Extract Function (106).

Many programmers are uncomfortable with this refactoring, as it forces you to
execute the loop twice. My reminder, as usual, is to separate refactoring from
optimization (Refactoring and Performance (64)). Once I have my code clear,
I’ll optimize it, and if the loop traversal is a bottleneck, it’s easy to slam the loops
back together. But the actual iteration through even a large list is rarely a bottle-
neck, and splitting the loops often enables other, more powerful, optimizations.

Mechanics

Copy the loop.

Identify and eliminate duplicate side effects.

Test.

When done, consider Extract Function (106) on each loop.

Example

I’ll start with a little bit of code that calculates the total salary and youngest age.

 let youngest = people[0] ? people[0].age : Infinity;
 let totalSalary = 0;
 for (const p of people) {
 if (p.age < youngest) youngest = p.age;
 totalSalary += p.salary;
 }

 return `youngestAge: ${youngest}, totalSalary: ${totalSalary}`;

It’s a very simple loop, but it’s doing two different calculations. To split them,
I begin with just copying the loop.

 let youngest = people[0] ? people[0].age : Infinity;
 let totalSalary = 0;
 for (const p of people) {
 if (p.age < youngest) youngest = p.age;
 totalSalary += p.salary;
 }

Chapter 8 Moving Features228

ptg26261585

 for (const p of people) {
 if (p.age < youngest) youngest = p.age;
 totalSalary += p.salary;
 }

 return `youngestAge: ${youngest}, totalSalary: ${totalSalary}`;

With the loop copied, I need to remove the duplication that would otherwise
produce wrong results. If something in the loop has no side effects, I can leave
it there for now, but it’s not the case with this example.

 let youngest = people[0] ? people[0].age : Infinity;
 let totalSalary = 0;
 for (const p of people) {

if (p.age < youngest) youngest = p.age;
 totalSalary += p.salary;
 }

 for (const p of people) {
 if (p.age < youngest) youngest = p.age;

totalSalary += p.salary;
 }

 return `youngestAge: ${youngest}, totalSalary: ${totalSalary}`;

Officially, that’s the end of the Split Loop refactoring. But the point of Split
Loop isn’t what it does on its own but what it sets up for the next move—and
I’m usually looking to extract the loops into their own functions. I’ll use Slide
Statements (223) to reorganize the code a bit first.

 let totalSalary = 0;
 for (const p of people) {
 totalSalary += p.salary;
 }

 let youngest = people[0] ? people[0].age : Infinity;
 for (const p of people) {
 if (p.age < youngest) youngest = p.age;
 }

 return `youngestAge: ${youngest}, totalSalary: ${totalSalary}`;

Then I do a couple of Extract Function (106).

229Split Loop

ptg26261585

 return `youngestAge: ${youngestAge()}, totalSalary: ${totalSalary()}`;

 function totalSalary() {
 let totalSalary = 0;
 for (const p of people) {
 totalSalary += p.salary;
 }
 return totalSalary;
 }

 function youngestAge() {
 let youngest = people[0] ? people[0].age : Infinity;
 for (const p of people) {
 if (p.age < youngest) youngest = p.age;
 }
 return youngest;
 }

I can rarely resist Replace Loop with Pipeline (231) for the total salary, and there’s
an obvious Substitute Algorithm (195) for the youngest age.

 return `youngestAge: ${youngestAge()}, totalSalary: ${totalSalary()}`;

 function totalSalary() {
 return people.reduce((total,p) => total + p.salary, 0);
 }
 function youngestAge() {
 return Math.min(...people.map(p => p.age));
 }

Chapter 8 Moving Features230

ptg26261585

Replace Loop with Pipeline

const names = [];
for (const i of input) {
 if (i.job === "programmer")
 names.push(i.name);
}

const names = input
 .filter(i => i.job === "programmer")
 .map(i => i.name)
;

Motivation

Like most programmers, I was taught to use loops to iterate over a collection of
objects. Increasingly, however, language environments provide a better construct:
the collection pipeline. Collection Pipelines [mf-cp] allow me to describe my
processing as a series of operations, each consuming and emitting a collection.
The most common of these operations are map, which uses a function to transform
each element of the input collection, and filter which uses a function to select a
subset of the input collection for later steps in the pipeline. I find logic much
easier to follow if it is expressed as a pipeline—I can then read from top to bottom
to see how objects flow through the pipeline.

Mechanics

Create a new variable for the loop’s collection.

This may be a simple copy of an existing variable.

231Replace Loop with Pipeline

ptg26261585

Starting at the top, take each bit of behavior in the loop and replace it with
a collection pipeline operation in the derivation of the loop collection
variable. Test after each change.

Once all behavior is removed from the loop, remove it.

If it assigns to an accumulator, assign the pipeline result to the accumulator.

Example

I’ll begin with some data: a CSV file of data about our offices.

office, country, telephone
Chicago, USA, +1 312 373 1000
Beijing, China, +86 4008 900 505
Bangalore, India, +91 80 4064 9570
Porto Alegre, Brazil, +55 51 3079 3550
Chennai, India, +91 44 660 44766

... (more data follows)

The following function picks out the offices in India and returns their cities
and telephone numbers:

 function acquireData(input) {
 const lines = input.split("\n");
 let firstLine = true;
 const result = [];
 for (const line of lines) {
 if (firstLine) {
 firstLine = false;
 continue;
 }
 if (line.trim() === "") continue;
 const record = line.split(",");
 if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});
 }
 }
 return result;
 }

I want to replace that loop with a collection pipeline.
My first step is to create a separate variable for the loop to work over.

Chapter 8 Moving Features232

ptg26261585

 function acquireData(input) {
 const lines = input.split("\n");
 let firstLine = true;
 const result = [];
 const loopItems = lines
 for (const line of loopItems) {
 if (firstLine) {
 firstLine = false;
 continue;
 }
 if (line.trim() === "") continue;
 const record = line.split(",");
 if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});
 }
 }
 return result;
 }

The first part of the loop is all about skipping the first line of the CSV file. This
calls for a slice, so I remove that first section of the loop and add a slice operation
to the formation of the loop variable.

 function acquireData(input) {
 const lines = input.split("\n");

let firstLine = true;
 const result = [];
 const loopItems = lines
 .slice(1);
 for (const line of loopItems) {

if (firstLine) {
firstLine = false;
continue;

}
 if (line.trim() === "") continue;
 const record = line.split(",");
 if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});
 }
 }
 return result;
 }

As a bonus, this lets me delete firstLine—and I particularly enjoy deleting control
variables.

233Replace Loop with Pipeline

ptg26261585

The next bit of behavior removes any blank lines. I can replace this with a filter
operation.

 function acquireData(input) {
 const lines = input.split("\n");
 const result = [];
 const loopItems = lines
 .slice(1)
 .filter(line => line.trim() !== "")
 ;
 for (const line of loopItems) {

if (line.trim() === "") continue;
 const record = line.split(",");
 if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});
 }
 }
 return result;
 }

When writing a pipeline, I find it best to put the terminal semicolon on its own line.

I use the map operation to turn lines into an array of strings—misleadingly
called record in the original function, but it’s safer to keep the name for now and
rename later.

 function acquireData(input) {
 const lines = input.split("\n");
 const result = [];
 const loopItems = lines
 .slice(1)
 .filter(line => line.trim() !== "")
 .map(line => line.split(","))
 ;
 for (const line of loopItems) {
 const record = line;.split(",");
 if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});
 }
 }
 return result;
 }

Filter again to just get the India records:

Chapter 8 Moving Features234

ptg26261585

 function acquireData(input) {
 const lines = input.split("\n");
 const result = [];
 const loopItems = lines
 .slice(1)
 .filter(line => line.trim() !== "")
 .map(line => line.split(","))
 .filter(record => record[1].trim() === "India")
 ;
 for (const line of loopItems) {
 const record = line;

if (record[1].trim() === "India") {
 result.push({city: record[0].trim(), phone: record[2].trim()});

}
 }
 return result;
 }

Map to the output record form:

 function acquireData(input) {
 const lines = input.split("\n");
 const result = [];
 const loopItems = lines
 .slice(1)
 .filter(line => line.trim() !== "")
 .map(line => line.split(","))
 .filter(record => record[1].trim() === "India")
 .map(record => ({city: record[0].trim(), phone: record[2].trim()}))
 ;
 for (const line of loopItems) {
 const record = line;
 result.push(line);
 }
 return result;
 }

Now, all the loop does is assign values to the accumulator. So I can remove it
and assign the result of the pipeline to the accumulator:

235Replace Loop with Pipeline

ptg26261585

 function acquireData(input) {
 const lines = input.split("\n");
 const result = lines
 .slice(1)
 .filter(line => line.trim() !== "")
 .map(line => line.split(","))
 .filter(record => record[1].trim() === "India")
 .map(record => ({city: record[0].trim(), phone: record[2].trim()}))
 ;

for (const line of loopItems) {
const record = line;
result.push(line);

}
 return result;
 }

That’s the core of the refactoring. But I do have some cleanup I’d like to do. I
inlined result, renamed some lambda variables, and made the layout read more
like a table.

 function acquireData(input) {
 const lines = input.split("\n");
 return lines
 .slice (1)
 .filter (line => line.trim() !== "")
 .map (line => line.split(","))
 .filter (fields => fields[1].trim() === "India")
 .map (fields => ({city: fields[0].trim(), phone: fields[2].trim()}))
 ;
 }

I thought about inlining lines too, but felt that its presence explains what’s
happening.

Further Reading

For more examples on turning loops into pipelines, see my essay “Refactoring
with Loops and Collection Pipelines” [mf-ref-pipe].

Chapter 8 Moving Features236

ptg26261585

Remove Dead Code

if(false) {
 doSomethingThatUsedToMatter();
}

Motivation

When we put code into production, even on people’s devices, we aren’t charged
by weight. A few unused lines of code don’t slow down our systems nor take up
significant memory; indeed, decent compilers will instinctively remove them. But
unused code is still a significant burden when trying to understand how the
software works. It doesn’t carry any warning signs telling programmers that they
can ignore this function as it’s never called any more, so they still have to spend
time understanding what it’s doing and why changing it doesn’t seem to alter
the output as they expected.

Once code isn’t used any more, we should delete it. I don’t worry that I may
need it sometime in the future; should that happen, I have my version control
system so I can always dig it out again. If it’s something I really think I may need
one day, I might put a comment into the code that mentions the lost code and
which revision it was removed in—but, honestly, I can’t remember the last time
I did that, or regretted that I hadn’t done it.

Commenting out dead code was once a common habit. This was useful in the
days before version control systems were widely used, or when they were incon-
venient. Now, when I can put even the smallest code base under version control,
that’s no longer needed.

Mechanics

If the dead code can be referenced from outside, e.g., when it’s a full function,
do a search to check for callers.

Remove the dead code.

Test.

237Remove Dead Code

ptg26261585

This page intentionally left blank

ptg26261585

Data structures play an important role in our programs, so it’s no great shock
that I have a clutch of refactorings that focus on them. A value that’s used for
different purposes is a breeding ground for confusion and bugs—so, when I see
one, I use Split Variable (240) to separate the usages. As with any program element,
getting a variable’s name right is tricky and important, so Rename Variable (137)
is often my friend. But sometimes the best thing I can do with a variable is to
get rid of it completely—with Replace Derived Variable with Query (248).

I often find problems in a code base due to a confusion between references
and values, so I use Change Reference to Value (252) and Change Value to Reference
(256) to change between these styles.

239

Chapter 9

Organizing Data

ptg26261585

Split Variable
formerly: Remove Assignments to Parameters
formerly: Split Temp

let temp = 2 * (height + width);
console.log(temp);
temp = height * width;
console.log(temp);

const perimeter = 2 * (height + width);
console.log(perimeter);
const area = height * width;
console.log(area);

Motivation

Variables have various uses. Some of these uses naturally lead to the variable
being assigned to several times. Loop variables change for each run of a loop
(such as the i in for (let i=0; i<10; i++)). Collecting variables store a value that is
built up during the method.

Many other variables are used to hold the result of a long-winded bit of code
for easy reference later. These kinds of variables should be set only once. If they
are set more than once, it is a sign that they have more than one responsibility
within the method. Any variable with more than one responsibility should be
replaced with multiple variables, one for each responsibility. Using a variable for
two different things is very confusing for the reader.

Mechanics

Change the name of the variable at its declaration and first assignment.

If the later assignments are of the form i = i + something, that is a collecting variable,
so don’t split it. A collecting variable is often used for calculating sums, string
concatenation, writing to a stream, or adding to a collection.

Chapter 9 Organizing Data240

ptg26261585

If possible, declare the new variable as immutable.

Change all references of the variable up to its second assignment.

Test.

Repeat in stages, at each stage renaming the variable at the declaration and
changing references until the next assignment, until you reach the final
assignment.

Example

For this example, I compute the distance traveled by a haggis. From a standing
start, a haggis experiences an initial force. After a delay, a secondary force kicks
in to further accelerate the haggis. Using the common laws of motion, I can
compute the distance traveled as follows:

 function distanceTravelled (scenario, time) {
 let result;
 let acc = scenario.primaryForce / scenario.mass;
 let primaryTime = Math.min(time, scenario.delay);
 result = 0.5 * acc * primaryTime * primaryTime;
 let secondaryTime = time - scenario.delay;
 if (secondaryTime > 0) {
 let primaryVelocity = acc * scenario.delay;
 acc = (scenario.primaryForce + scenario.secondaryForce) / scenario.mass;
 result += primaryVelocity * secondaryTime + 0.5 * acc * secondaryTime * secondaryTime;
 }
 return result;
 }

A nice awkward little function. The interesting thing for our example is the
way the variable acc is set twice. It has two responsibilities: one to hold the initial
acceleration from the first force and another later to hold the acceleration from
both forces. I want to split this variable.

When trying to understand how a variable is used, it’s handy if my editor can highlight
all occurrences of a symbol within a function or file. Most modern editors can do this
pretty easily.

I start at the beginning by changing the name of the variable and declaring
the new name as const. Then, I change all references to the variable from that
point up to the next assignment. At the next assignment, I declare it:

241Split Variable

ptg26261585

 function distanceTravelled (scenario, time) {
 let result;

const primaryAcceleration = scenario.primaryForce / scenario.mass;
 let primaryTime = Math.min(time, scenario.delay);
 result = 0.5 * primaryAcceleration * primaryTime * primaryTime;
 let secondaryTime = time - scenario.delay;
 if (secondaryTime > 0) {
 let primaryVelocity = primaryAcceleration * scenario.delay;

let acc = (scenario.primaryForce + scenario.secondaryForce) / scenario.mass;
 result += primaryVelocity * secondaryTime + 0.5 * acc * secondaryTime * secondaryTime;
 }
 return result;
 }

I choose the new name to represent only the first use of the variable. I make
it const to ensure it is only assigned once. I can then declare the original variable
at its second assignment. Now I can compile and test, and all should work.

I continue on the second assignment of the variable. This removes the original
variable name completely, replacing it with a new variable named for the
second use.

 function distanceTravelled (scenario, time) {
 let result;
 const primaryAcceleration = scenario.primaryForce / scenario.mass;
 let primaryTime = Math.min(time, scenario.delay);
 result = 0.5 * primaryAcceleration * primaryTime * primaryTime;
 let secondaryTime = time - scenario.delay;
 if (secondaryTime > 0) {
 let primaryVelocity = primaryAcceleration * scenario.delay;

const secondaryAcceleration = (scenario.primaryForce + scenario.secondaryForce) / scenario.mass;
 result += primaryVelocity * secondaryTime +
 0.5 * secondaryAcceleration * secondaryTime * secondaryTime;
 }
 return result;
 }

I’m sure you can think of a lot more refactoring to be done here. Enjoy it. (I’m
sure it’s better than eating the haggis—do you know what they put in those
things?)

Example: Assigning to an Input Parameter

Another case of splitting a variable is where the variable is declared as an input
parameter. Consider something like

 function discount (inputValue, quantity) {
 if (inputValue > 50) inputValue = inputValue - 2;
 if (quantity > 100) inputValue = inputValue - 1;
 return inputValue;
 }

Chapter 9 Organizing Data242

ptg26261585

Here inputValue is used both to supply an input to the function and to hold
the result for the caller. (Since JavaScript has call-by-value parameters, any
modification of inputValue isn’t seen by the caller.)

In this situation, I would split that variable.

 function discount (originalInputValue, quantity) {
 let inputValue = originalInputValue;
 if (inputValue > 50) inputValue = inputValue - 2;
 if (quantity > 100) inputValue = inputValue - 1;
 return inputValue;
 }

I then perform Rename Variable (137) twice to get better names.

 function discount (inputValue, quantity) {
 let result = inputValue;
 if (inputValue > 50) result = result - 2;
 if (quantity > 100) result = result - 1;
 return result;
 }

You’ll notice that I changed the second line to use inputValue as its data source.
Although the two are the same, I think that line is really about applying
the modification to the result value based on the original input value, not the
(coincidentally same) value of the result accumulator.

243Split Variable

ptg26261585

Rename Field

class Organization {
 get name() {...}
}

class Organization {
 get title() {...}
}

Motivation

Names are important, and field names in record structures can be especially im-
portant when those record structures are widely used across a program. Data
structures play a particularly important role in understanding. Many years ago
Fred Brooks said, “Show me your flowcharts and conceal your tables, and I shall
continue to be mystified. Show me your tables, and I won’t usually need your
flowcharts; they’ll be obvious.” While I don’t see many people drawing flowcharts
these days, the adage remains valid. Data structures are the key to understanding
what’s going on.

Since these data structures are so important, it’s essential to keep them clear.
Like anything else, my understanding of data improves the more I work on the
software, so it’s vital that this improved understanding is embedded into
the program.

You may want to rename a field in a record structure, but the idea also applies
to classes. Getter and setter methods form an effective field for users of the class.
Renaming them is just as important as with bare record structures.

Mechanics

If the record has limited scope, rename all accesses to the field and test; no
need to do the rest of the mechanics.

Chapter 9 Organizing Data244

ptg26261585

If the record isn’t already encapsulated, apply Encapsulate Record (162).

Rename the private field inside the object, adjust internal methods to fit.

Test.

If the constructor uses the name, apply Change Function Declaration (124) to
rename it.

Apply Rename Function (124) to the accessors.

Example: Renaming a Field

I’ll start with a constant.

 const organization = {name: "Acme Gooseberries", country: "GB"};

I want to change “name” to “title”. The object is widely used in the code base,
and there are updates to the title in the code. So my first move is to apply
Encapsulate Record (162).

 class Organization {
 constructor(data) {
 this._name = data.name;
 this._country = data.country;
 }
 get name() {return this._name;}
 set name(aString) {this._name = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
 }

 const organization = new Organization({name: "Acme Gooseberries", country: "GB"});

Now that I’ve encapsulated the record structure into the class, there are four
places I need to look at for renaming: the getting function, the setting function,
the constructor, and the internal data structure. While that may sound like I’ve
increased my workload, it actually makes my work easier since I can now change
these independently instead of all at once, taking smaller steps. Smaller steps
mean fewer things to go wrong in each step—therefore, less work. It wouldn’t
be less work if I never made mistakes—but not making mistakes is a fantasy I
gave up on a long time ago.

Since I’ve copied the input data structure into the internal data structure, I
need to separate them so I can work on them independently. I can do this by
defining a separate field and adjusting the constructor and accessors to use it.

245Rename Field

ptg26261585

class Organization…
 class Organization {
 constructor(data) {
 this._title = data.name;
 this._country = data.country;
 }
 get name() {return this._title;}
 set name(aString) {this._title = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
 }

Next, I add support for using “title” in the constructor.

class Organization…
 class Organization {
 constructor(data) {
 this._title = (data.title !== undefined) ? data.title : data.name;
 this._country = data.country;
 }
 get name() {return this._title;}
 set name(aString) {this._title = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
 }

Now, callers of my constructor can use either name or title (with title taking
precedence). I can now go through all constructor callers and change them
one-by-one to use the new name.

 const organization = new Organization({title: "Acme Gooseberries", country: "GB"});

Once I’ve done all of them, I can remove the support for the name.

class Organization…
 class Organization {
 constructor(data) {
 this._title = data.title;
 this._country = data.country;
 }
 get name() {return this._title;}
 set name(aString) {this._title = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
 }

Now that the constructor and data use the new name, I can change the acces-
sors, which is as simple as applying Rename Function (124) to each one.

Chapter 9 Organizing Data246

ptg26261585

class Organization…
 class Organization {
 constructor(data) {
 this._title = data.title;
 this._country = data.country;
 }
 get title() {return this._title;}
 set title(aString) {this._title = aString;}
 get country() {return this._country;}
 set country(aCountryCode) {this._country = aCountryCode;}
 }

I’ve shown this process in its most heavyweight form needed for a widely used
data structure. If it’s being used only locally, as in a single function, I can probably
just rename the various properties in one go without doing encapsulation. It’s a
matter of judgment when to apply to the full mechanics here—but, as usual with
refactoring, if my tests break, that’s a sign I need to use the more gradual
procedure.

Some languages allow me to make a data structure immutable. In this case,
rather than encapsulating it, I can copy the value to the new name, gradually
change the users, then remove the old name. Duplicating data is a recipe for
disaster with mutable data structures; removing such disasters is why immutable
data is so popular.

247Rename Field

ptg26261585

Replace Derived Variable with Query

get discountedTotal() {return this._discountedTotal;}
set discount(aNumber) {
 const old = this._discount;
 this._discount = aNumber;
 this._discountedTotal += old - aNumber;
}

get discountedTotal() {return this._baseTotal - this._discount;}
set discount(aNumber) {this._discount = aNumber;}

Motivation

One of the biggest sources of problems in software is mutable data. Data changes
can often couple together parts of code in awkward ways, with changes in one
part leading to knock-on effects that are hard to spot. In many situations it’s not
realistic to entirely remove mutable data—but I do advocate minimizing the scope
of mutable data at much as possible.

One way I can make a big impact is by removing any variables that I could
just as easily calculate. A calculation often makes it clearer what the meaning of
the data is, and it is protected from being corrupted when you fail to update the
variable as the source data changes.

A reasonable exception to this is when the source data for the calculation is
immutable and we can force the result to being immutable too. Transformation
operations that create new data structures are thus reasonable to keep even if
they could be replaced with calculations. Indeed, there is a duality here between
objects that wrap a data structure with a series of calculated properties and
functions that transform one data structure into another. The object route is
clearly better when the source data changes and you would have to manage the
lifetime of the derived data structures. But if the source data is immutable, or
the derived data is very transient, then both approaches are effective.

Chapter 9 Organizing Data248

ptg26261585

Mechanics

Identify all points of update for the variable. If necessary, use Split Variable
(240) to separate each point of update.

Create a function that calculates the value of the variable.

Use Introduce Assertion (302) to assert that the variable and the calculation
give the same result whenever the variable is used.

If necessary, use Encapsulate Variable (132) to provide a home for the assertion.

Test.

Replace any reader of the variable with a call to the new function.

Test.

Apply Remove Dead Code (237) to the declaration and updates to the variable.

Example

Here’s a small but perfectly formed example of ugliness:

class ProductionPlan…
 get production() {return this._production;}
 applyAdjustment(anAdjustment) {
 this._adjustments.push(anAdjustment);
 this._production += anAdjustment.amount;
 }

Ugliness is in the eye of beholder; here, I see ugliness in duplication—not the
common duplication of code but duplication of data. When I apply an adjustment,
I’m not just storing that adjustment but also using it to modify an accumulator.
I can just calculate that value, without having to update it.

But I’m a cautious fellow. It is my hypothesis is that I can just calculate it—I
can test that hypothesis by using Introduce Assertion (302):

class ProductionPlan…
 get production() {
 assert(this._production === this.calculatedProduction);
 return this._production;
 }

 get calculatedProduction() {
 return this._adjustments
 .reduce((sum, a) => sum + a.amount, 0);
 }

249Replace Derived Variable with Query

ptg26261585

With the assertion in place, I run my tests. If the assertion doesn’t fail, I can
replace returning the field with returning the calculation:

class ProductionPlan…
 get production() {

assert(this._production === this.calculatedProduction);
 return this.calculatedProduction;
 }

Then Inline Function (115):

class ProductionPlan…
 get production() {
 return this._adjustments
 .reduce((sum, a) => sum + a.amount, 0);
 }

I clean up any references to the old variable with Remove Dead Code (237):

class ProductionPlan…
 applyAdjustment(anAdjustment) {
 this._adjustments.push(anAdjustment);

this._production += anAdjustment.amount;
 }

Example: More Than One Source

The above example is nice and easy because there’s clearly a single source for the
value of production. But sometimes, more than one element can combine in
the accumulator.

class ProductionPlan…
 constructor (production) {

this._production = production;
 this._adjustments = [];
 }
 get production() {return this._production;}
 applyAdjustment(anAdjustment) {
 this._adjustments.push(anAdjustment);

this._production += anAdjustment.amount;
 }

If I do the same Introduce Assertion (302) that I did above, it will now fail for
any case where the initial value of the production isn’t zero.

But I can still replace the derived data. The only difference is that I must first
apply Split Variable (240).

Chapter 9 Organizing Data250

ptg26261585

constructor (production) {
 this._initialProduction = production;
 this._productionAccumulator = 0;
 this._adjustments = [];
}
get production() {
 return this._initialProduction + this._productionAccumulator;
}

Now I can Introduce Assertion (302):

class ProductionPlan…
 get production() {
 assert(this._productionAccumulator === this.calculatedProductionAccumulator);
 return this._initialProduction + this._productionAccumulator;
 }

 get calculatedProductionAccumulator() {
 return this._adjustments
 .reduce((sum, a) => sum + a.amount, 0);
 }

and continue pretty much as before. I’d be inclined, however, to leave
totalProductionAjustments as its own property, without inlining it.

251Replace Derived Variable with Query

ptg26261585

Change Reference to Value
inverse of: Change Value to Reference (256)

class Product {
 applyDiscount(arg) {this._price.amount -= arg;}

class Product {
 applyDiscount(arg) {
 this._price = new Money(this._price.amount - arg, this._price.currency);
 }

Motivation

When I nest an object, or data structure, within another I can treat the inner
object as a reference or as a value. The difference is most obviously visible in
how I handle updates of the inner object’s properties. If I treat it as a reference,
I’ll update the inner object’s property keeping the same inner object. If I treat it
as a value, I will replace the entire inner object with a new one that has the
desired property.

If I treat a field as a value, I can change the class of the inner object to make
it a Value Object [mf-vo]. Value objects are generally easier to reason about,
particularly because they are immutable. In general, immutable data structures
are easier to deal with. I can pass an immutable data value out to other parts of
the program and not worry that it might change without the enclosing object
being aware of the change. I can replicate values around my program and not
worry about maintaining memory links. Value objects are especially useful in
distributed and concurrent systems.

This also suggests when I shouldn’t do this refactoring. If I want to share an
object between several objects so that any change to the shared object is visible
to all its collaborators, then I need the shared object to be a reference.

Chapter 9 Organizing Data252

ptg26261585

Mechanics

Check that the candidate class is immutable or can become immutable.

For each setter, apply Remove Setting Method (331).

Provide a value-based equality method that uses the fields of the value object.

Most language environments provide an overridable equality function for this
purpose. Usually you must override a hashcode generator method as well.

Example

Imagine we have a person object that holds onto a crude telephone number.

class Person…
 constructor() {
 this._telephoneNumber = new TelephoneNumber();
 }

 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 set officeAreaCode(arg) {this._telephoneNumber.areaCode = arg;}
 get officeNumber() {return this._telephoneNumber.number;}
 set officeNumber(arg) {this._telephoneNumber.number = arg;}

class TelephoneNumber…
 get areaCode() {return this._areaCode;}
 set areaCode(arg) {this._areaCode = arg;}

 get number() {return this._number;}
 set number(arg) {this._number = arg;}

This situation is the result of an Extract Class (182) where the old parent still
holds update methods for the new object. This is a good time to apply Change
Reference to Value since there is only one reference to the new class.

The first thing I need to do is to make the telephone number immutable. I do
this by applying Remove Setting Method (331) to the fields. The first step of Remove
Setting Method (331) is to use Change Function Declaration (124) to add the two
fields to the constructor and enhance the constructor to call the setters.

class TelephoneNumber…
 constructor(areaCode, number) {
 this._areaCode = areaCode;
 this._number = number;
 }

Now I look at the callers of the setters. For each one, I need to change it to a
reassignment. I start with the area code.

253Change Reference to Value

ptg26261585

class Person…
 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 set officeAreaCode(arg) {
 this._telephoneNumber = new TelephoneNumber(arg, this.officeNumber);
 }
 get officeNumber() {return this._telephoneNumber.number;}
 set officeNumber(arg) {this._telephoneNumber.number = arg;}

I then repeat that step with the remaining field.

class Person…
 get officeAreaCode() {return this._telephoneNumber.areaCode;}
 set officeAreaCode(arg) {
 this._telephoneNumber = new TelephoneNumber(arg, this.officeNumber);
 }
 get officeNumber() {return this._telephoneNumber.number;}
 set officeNumber(arg) {
 this._telephoneNumber = new TelephoneNumber(this.officeAreaCode, arg);
 }

Now the telephone number is immutable, it is ready to become a true value.
The citizenship test for a value object is that it uses value-based equality. This
is an area where JavaScript falls down, as there is nothing in the language and
core libraries that understands replacing a reference-based equality with a
value-based one. The best I can do is to create my own equals method.

class TelephoneNumber…
 equals(other) {
 if (!(other instanceof TelephoneNumber)) return false;
 return this.areaCode === other.areaCode &&
 this.number === other.number;
 }

It’s also important to test it with something like

 it('telephone equals', function() {
 assert(new TelephoneNumber("312", "555-0142")
 .equals(new TelephoneNumber("312", "555-0142")));
 });

The unusual formatting I use here should make it obvious that they are the same constructor
call.

The vital thing I do in the test is create two independent objects and test that
they match as equal.

Chapter 9 Organizing Data254

ptg26261585

In most object-oriented languages, there is a built-in equality test that is supposed to
be overridden for value-based equality. In Ruby, I can override the == operator; in Java,
I override the Object.equals() method. And whenever I override an equality method, I
usually need to override a hashcode generating method too (e.g., Object.hashCode() in Java)
to ensure collections that use hashing work properly with my new value.

If the telephone number is used by more than one client, the procedure is still
the same. As I apply Remove Setting Method (331), I’ll be modifying several clients
instead of just one. Tests for non-equal telephone numbers, as well as comparisons
to non-telephone-numbers and null values, are also worthwhile.

255Change Reference to Value

ptg26261585

Change Value to Reference
inverse of: Change Reference to Value (252)

let customer = new Customer(customerData);

let customer = customerRepository.get(customerData.id);

Motivation

A data structure may have several records linked to the same logical data structure.
I might read in a list of orders, some of which are for the same customer. When I
have sharing like this, I can represent it by treating the customer either as a value
or as a reference. With a value, the customer data is copied into each order; with
a reference, there is only one data structure that multiple orders link to.

If the customer never needs to be updated, then both approaches are reasonable.
It is, perhaps, a bit confusing to have multiple copies of the same data, but it’s
common enough to not be a problem. In some cases, there may be issues
with memory due to multiple copies—but, like any performance issue, that’s
relatively rare.

The biggest difficulty in having physical copies of the same logical data occurs
when I need to update the shared data. I then have to find all the copies and
update them all. If I miss one, I’ll get a troubling inconsistency in my data. In
this case, it’s often worthwhile to change the copied data into a single reference.
That way, any change is visible to all the customer’s orders.

Changing a value to a reference results in only one object being present for
an entity, and it usually means I need some kind of repository where I can access
these objects. I then only create the object for an entity once, and everywhere
else I retrieve it from the repository.

Chapter 9 Organizing Data256

ptg26261585

Mechanics

Create a repository for instances of the related object (if one isn’t already
present).

Ensure the constructor has a way of looking up the correct instance of the
related object.

Change the constructors for the host object to use the repository to obtain
the related object. Test after each change.

Example

I’ll begin with a class that represents orders, which I might create from an incom-
ing JSON document. Part of the order data is a customer ID from which I’m
creating a customer object.

class Order…
 constructor(data) {
 this._number = data.number;
 this._customer = new Customer(data.customer);
 // load other data
 }
 get customer() {return this._customer;}

class Customer…
 constructor(id) {
 this._id = id;
 }
 get id() {return this._id;}

The customer object I create this way is a value. If I have five orders that refer
to the customer ID of 123, I’ll have five separate customer objects. Any change
I make to one of them will not be reflected in the others. Should I want to enrich
the customer objects, perhaps by gathering data from a customer service, I’d have
to update all five customers with the same data. Having duplicate objects like
this always makes me nervous—it’s confusing to have multiple objects represent-
ing the same entity, such as a customer. This problem is particularly awkward if
the customer object is mutable, which can lead to inconsistencies between the
customer objects.

If I want to use the same customer object each time, I’ll need a place to store
it. Exactly where to store entities like this will vary from application to application,
but for a simple case I like to use a repository object [mf-repos].

257Change Value to Reference

ptg26261585

 let _repositoryData;

 export function initialize() {
 _repositoryData = {};
 _repositoryData.customers = new Map();
 }

 export function registerCustomer(id) {
 if (! _repositoryData.customers.has(id))
 _repositoryData.customers.set(id, new Customer(id));
 return findCustomer(id);
 }

 export function findCustomer(id) {
 return _repositoryData.customers.get(id);
 }

The repository allows me to register customer objects with an ID and ensures
I only create one customer object with the same ID. With this in place, I can
change the order’s constructor to use it.

Often, when doing this refactoring, the repository already exists, so I can just
use it.

The next step is to figure out how the constructor for the order can obtain the
correct customer object. In this case it’s easy, since the customer’s ID is present
in the input data stream.

class Order…
 constructor(data) {
 this._number = data.number;
 this._customer = registerCustomer(data.customer);
 // load other data
 }
 get customer() {return this._customer;}

Now, any changes I make to the customer of one order will be synchronized
across all the orders sharing the same customer.

For this example, I created a new customer object with the first order that ref-
erenced it. Another common approach is to get a list of customers, populate the
repository with them, and then link to them as I read the orders. In that case,
an order that contains a customer ID not in the repository would indicate an error.

One problem with this code is that the constructor body is coupled to the
global repository. Globals should be treated with care—like a powerful drug, they
can be beneficial in small doses but a poison if used too much. If I’m concerned
about it, I can pass the repository as a parameter to the constructor.

Chapter 9 Organizing Data258

ptg26261585

Much of the power of programs comes from their ability to implement conditional
logic—but, sadly, much of the complexity of programs lies in these conditionals.
I often use refactoring to make conditional sections easier to understand. I regu-
larly apply Decompose Conditional (260) to complicated conditionals, and I use
Consolidate Conditional Expression (263) to make logical combinations clearer. I
use Replace Nested Conditional with Guard Clauses (266) to clarify cases where I want
to run some pre-checks before my main processing. If I see several conditions
using the same switching logic, it’s a good time to pull Replace Conditional with
Polymorphism (272) out the box.

A lot of conditionals are used to handle special cases, such as nulls; if that
logic is mostly the same, then Introduce Special Case (289) (often referred to as
Introduce Null Object (289)) can remove a lot of duplicate code. And, although I
like to remove conditions a lot, if I want to communicate (and check) a program’s
state, I find Introduce Assertion (302) a worthwhile addition.

259

Chapter 10

Simplifying Conditional Logic

ptg26261585

Decompose Conditional

if (!aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd))
 charge = quantity * plan.summerRate;
else
 charge = quantity * plan.regularRate + plan.regularServiceCharge;

if (summer())
 charge = summerCharge();
else
 charge = regularCharge();

Motivation

One of the most common sources of complexity in a program is complex condi-
tional logic. As I write code to do various things depending on various conditions,
I can quickly end up with a pretty long function. Length of a function is in itself
a factor that makes it harder to read, but conditions increase the difficulty. The
problem usually lies in the fact that the code, both in the condition checks and
in the actions, tells me what happens but can easily obscure why it happens.

As with any large block of code, I can make my intention clearer by decompos-
ing it and replacing each chunk of code with a function call named after the in-
tention of that chunk. With conditions, I particularly like doing this for the
conditional part and each of the alternatives. This way, I highlight the condition
and make it clear what I’m branching on. I also highlight the reason for the
branching.

Chapter 10 Simplifying Conditional Logic260

ptg26261585

This is really just a particular case of applying Extract Function (106) to my code,
but I like to highlight this case as one where I’ve often found a remarkably good
value for the exercise.

Mechanics

Apply Extract Function (106) on the condition and each leg of the conditional.

Example

Suppose I’m calculating the charge for something that has separate rates for
winter and summer:

if (!aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd))
 charge = quantity * plan.summerRate;
else
 charge = quantity * plan.regularRate + plan.regularServiceCharge;

I extract the condition into its own function.

if (summer())
 charge = quantity * plan.summerRate;
else
 charge = quantity * plan.regularRate + plan.regularServiceCharge;

function summer() {
 return !aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd);
}

Then I do the then leg:

if (summer())
 charge = summerCharge();
else
 charge = quantity * plan.regularRate + plan.regularServiceCharge;

function summer() {
 return !aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd);
}
function summerCharge() {
 return quantity * plan.summerRate;
}

Finally, the else leg:

261Decompose Conditional

ptg26261585

if (summer())
 charge = summerCharge();
else
 charge = regularCharge();

function summer() {
 return !aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd);
}
function summerCharge() {
 return quantity * plan.summerRate;
}
function regularCharge() {
 return quantity * plan.regularRate + plan.regularServiceCharge;
}

With that done, I like to reformat the conditional using the ternary operator.

charge = summer() ? summerCharge() : regularCharge();

function summer() {
 return !aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd);
}
function summerCharge() {
 return quantity * plan.summerRate;
}
function regularCharge() {
 return quantity * plan.regularRate + plan.regularServiceCharge;
}

Chapter 10 Simplifying Conditional Logic262

ptg26261585

Consolidate Conditional Expression

if (anEmployee.seniority < 2) return 0;
if (anEmployee.monthsDisabled > 12) return 0;
if (anEmployee.isPartTime) return 0;

if (isNotEligableForDisability()) return 0;

function isNotEligableForDisability() {
 return ((anEmployee.seniority < 2)
 || (anEmployee.monthsDisabled > 12)
 || (anEmployee.isPartTime));
}

Motivation

Sometimes, I run into a series of conditional checks where each check is different
yet the resulting action is the same. When I see this, I use and and or operators
to consolidate them into a single conditional check with a single result.

Consolidating the conditional code is important for two reasons. First, it makes
it clearer by showing that I’m really making a single check that combines other
checks. The sequence has the same effect, but it looks like I’m carrying out a se-
quence of separate checks that just happen to be close together. The second
reason I like to do this is that it often sets me up for Extract Function (106). Ex-
tracting a condition is one of the most useful things I can do to clarify my code.
It replaces a statement of what I’m doing with why I’m doing it.

The reasons in favor of consolidating conditionals also point to the reasons
against doing it. If I consider it to be truly independent checks that shouldn’t be
thought of as a single check, I don’t do the refactoring.

263Consolidate Conditional Expression

ptg26261585

Mechanics

Ensure that none of the conditionals have any side effects.

If any do, use Separate Query from Modifier (306) on them first.

Take two of the conditional statements and combine their conditions using
a logical operator.

Sequences combine with or, nested if statements combine with and.

Test.

Repeat combining conditionals until they are all in a single condition.

Consider using Extract Function (106) on the resulting condition.

Example

Perusing some code, I see the following:

function disabilityAmount(anEmployee) {
 if (anEmployee.seniority < 2) return 0;
 if (anEmployee.monthsDisabled > 12) return 0;
 if (anEmployee.isPartTime) return 0;
 // compute the disability amount

It’s a sequence of conditional checks which all have the same result. Since the
result is the same, I should combine these conditions into a single expression.
For a sequence like this, I do it using an or operator.

function disabilityAmount(anEmployee) {
 if ((anEmployee.seniority < 2)

|| (anEmployee.monthsDisabled > 12)) return 0;
 if (anEmployee.isPartTime) return 0;
 // compute the disability amount

I test, then fold in the other condition:

function disabilityAmount(anEmployee) {
 if ((anEmployee.seniority < 2)
 || (anEmployee.monthsDisabled > 12)

|| (anEmployee.isPartTime)) return 0;
 // compute the disability amount

Once I have them all together, I use Extract Function (106) on the condition.

Chapter 10 Simplifying Conditional Logic264

ptg26261585

function disabilityAmount(anEmployee) {
 if (isNotEligableForDisability()) return 0;
 // compute the disability amount

 function isNotEligableForDisability() {
 return ((anEmployee.seniority < 2)
 || (anEmployee.monthsDisabled > 12)
 || (anEmployee.isPartTime));
 }

Example: Using ands

The example above showed combining statements with an or, but I may run into
cases that need ands as well. Such a case uses nested if statements:

if (anEmployee.onVacation)
 if (anEmployee.seniority > 10)
 return 1;
return 0.5;

I combine these using and operators.

if ((anEmployee.onVacation)
 && (anEmployee.seniority > 10)) return 1;
return 0.5;

If I have a mix of these, I can combine using and and or operators as needed.
When this happens, things are likely to get messy, so I use Extract Function (106)
liberally to make it all understandable.

265Consolidate Conditional Expression

ptg26261585

Replace Nested Conditional with Guard Clauses

function getPayAmount() {
 let result;
 if (isDead)
 result = deadAmount();
 else {
 if (isSeparated)
 result = separatedAmount();
 else {
 if (isRetired)
 result = retiredAmount();
 else
 result = normalPayAmount();
 }
 }
 return result;
}

function getPayAmount() {
 if (isDead) return deadAmount();
 if (isSeparated) return separatedAmount();
 if (isRetired) return retiredAmount();
 return normalPayAmount();
}

Chapter 10 Simplifying Conditional Logic266

ptg26261585

Motivation

I often find that conditional expressions come in two styles. In the first style,
both legs of the conditional are part of normal behavior, while in the second
style, one leg is normal and the other indicates an unusual condition.

These kinds of conditionals have different intentions—and these intentions
should come through in the code. If both are part of normal behavior, I use a
condition with an if and an else leg. If the condition is an unusual condition, I
check the condition and return if it’s true. This kind of check is often called a
guard clause.

The key point of Replace Nested Conditional with Guard Clauses is emphasis.
If I’m using an if-then-else construct, I’m giving equal weight to the if leg and
the else leg. This communicates to the reader that the legs are equally likely and
important. Instead, the guard clause says, “This isn’t the core to this function,
and if it happens, do something and get out.”

I often find I use Replace Nested Conditional with Guard Clauses when I’m
working with a programmer who has been taught to have only one entry point
and one exit point from a method. One entry point is enforced by modern lan-
guages, but one exit point is really not a useful rule. Clarity is the key principle:
If the method is clearer with one exit point, use one exit point; otherwise don’t.

Mechanics

Select outermost condition that needs to be replaced, and change it into a
guard clause.

Test.

Repeat as needed.

If all the guard clauses return the same result, use Consolidate Conditional
Expression (263).

Example

Here’s some code to calculate a payment amount for an employee. It’s only rele-
vant if the employee is still with the company, so it has to check for the two
other cases.

267Replace Nested Conditional with Guard Clauses

ptg26261585

function payAmount(employee) {
 let result;
 if(employee.isSeparated) {
 result = {amount: 0, reasonCode: "SEP"};
 }
 else {
 if (employee.isRetired) {
 result = {amount: 0, reasonCode: "RET"};
 }
 else {
 // logic to compute amount
 lorem.ipsum(dolor.sitAmet);
 consectetur(adipiscing).elit();
 sed.do.eiusmod = tempor.incididunt.ut(labore) && dolore(magna.aliqua);
 ut.enim.ad(minim.veniam);
 result = someFinalComputation();
 }
 }
 return result;
}

Nesting the conditionals here masks the true meaning of what it going on. The
primary purpose of this code only applies if these conditions aren’t the case. In
this situation, the intention of the code reads more clearly with guard clauses.

As with any refactoring change, I like to take small steps, so I begin with the
topmost condition.

function payAmount(employee) {
 let result;
 if (employee.isSeparated) return {amount: 0, reasonCode: "SEP"};
 if (employee.isRetired) {
 result = {amount: 0, reasonCode: "RET"};
 }
 else {
 // logic to compute amount
 lorem.ipsum(dolor.sitAmet);
 consectetur(adipiscing).elit();
 sed.do.eiusmod = tempor.incididunt.ut(labore) && dolore(magna.aliqua);
 ut.enim.ad(minim.veniam);
 result = someFinalComputation();
 }
 return result;
}

I test that change and move on to the next one.

Chapter 10 Simplifying Conditional Logic268

ptg26261585

function payAmount(employee) {
 let result;
 if (employee.isSeparated) return {amount: 0, reasonCode: "SEP"};
 if (employee.isRetired) return {amount: 0, reasonCode: "RET"};
 // logic to compute amount
 lorem.ipsum(dolor.sitAmet);
 consectetur(adipiscing).elit();
 sed.do.eiusmod = tempor.incididunt.ut(labore) && dolore(magna.aliqua);
 ut.enim.ad(minim.veniam);
 result = someFinalComputation();
 return result;
}

At which point the result variable isn’t really doing anything useful, so I
remove it.

function payAmount(employee) {
let result;

 if (employee.isSeparated) return {amount: 0, reasonCode: "SEP"};
 if (employee.isRetired) return {amount: 0, reasonCode: "RET"};
 // logic to compute amount
 lorem.ipsum(dolor.sitAmet);
 consectetur(adipiscing).elit();
 sed.do.eiusmod = tempor.incididunt.ut(labore) && dolore(magna.aliqua);
 ut.enim.ad(minim.veniam);
 return someFinalComputation();
}

The rule is that you always get an extra strawberry when you remove a mutable
variable.

Example: Reversing the Conditions

When reviewing the manuscript of the first edition of this book, Joshua Kerievsky
pointed out that we often do Replace Nested Conditional with Guard Clauses by
reversing the conditional expressions. Even better, he gave me an example so I
didn’t have to further tax my imagination.

function adjustedCapital(anInstrument) {
 let result = 0;
 if (anInstrument.capital > 0) {
 if (anInstrument.interestRate > 0 && anInstrument.duration > 0) {
 result = (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;
 }
 }
 return result;
}

269Replace Nested Conditional with Guard Clauses

ptg26261585

Again, I make the replacements one at a time, but this time I reverse the
condition as I put in the guard clause.

function adjustedCapital(anInstrument) {
 let result = 0;
 if (anInstrument.capital <= 0) return result;
 if (anInstrument.interestRate > 0 && anInstrument.duration > 0) {
 result = (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;
 }
 return result;
}

The next conditional is a bit more complicated, so I do it in two steps. First, I
simply add a not.

function adjustedCapital(anInstrument) {
 let result = 0;
 if (anInstrument.capital <= 0) return result;
 if (!(anInstrument.interestRate > 0 && anInstrument.duration > 0)) return result;
 result = (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;
 return result;
}

Leaving nots in a conditional like that twists my mind around at a painful angle,
so I simplify it:

function adjustedCapital(anInstrument) {
 let result = 0;
 if (anInstrument.capital <= 0) return result;
 if (anInstrument.interestRate <= 0 || anInstrument.duration <= 0) return result;
 result = (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;
 return result;
}

Both of those lines have conditions with the same result, so I apply Consolidate
Conditional Expression (263).

function adjustedCapital(anInstrument) {
 let result = 0;
 if (anInstrument.capital <= 0
 || anInstrument.interestRate <= 0
 || anInstrument.duration <= 0) return result;
 result = (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;
 return result;
}

The result variable is doing two things here. Its first setting to zero indicates
what to return when the guard clause triggers; its second value is the final com-
putation. I can get rid of it, which both eliminates its double usage and gets me
a strawberry.

Chapter 10 Simplifying Conditional Logic270

ptg26261585

function adjustedCapital(anInstrument) {
 if (anInstrument.capital <= 0
 || anInstrument.interestRate <= 0
 || anInstrument.duration <= 0) return 0;
return (anInstrument.income / anInstrument.duration) * anInstrument.adjustmentFactor;

}

271Replace Nested Conditional with Guard Clauses

ptg26261585

Replace Conditional with Polymorphism

switch (bird.type) {
 case 'EuropeanSwallow':
 return "average";
 case 'AfricanSwallow':
 return (bird.numberOfCoconuts > 2) ? "tired" : "average";
 case 'NorwegianBlueParrot':
 return (bird.voltage > 100) ? "scorched" : "beautiful";
 default:
 return "unknown";

class EuropeanSwallow {
 get plumage() {
 return "average";
 }
class AfricanSwallow {
 get plumage() {
 return (this.numberOfCoconuts > 2) ? "tired" : "average";
 }
class NorwegianBlueParrot {
 get plumage() {
 return (this.voltage > 100) ? "scorched" : "beautiful";
 }

Motivation

Complex conditional logic is one of the hardest things to reason about in pro-
gramming, so I always look for ways to add structure to conditional logic. Often,
I find I can separate the logic into different circumstances—high-level cases—to

Chapter 10 Simplifying Conditional Logic272

ptg26261585

divide the conditions. Sometimes it’s enough to represent this division within
the structure of a conditional itself, but using classes and polymorphism can
make the separation more explicit.

A common case for this is where I can form a set of types, each handling the
conditional logic differently. I might notice that books, music, and food vary in
how they are handled because of their type. This is made most obvious when
there are several functions that have a switch statement on a type code. In that
case, I remove the duplication of the common switch logic by creating classes
for each case and using polymorphism to bring out the type-specific behavior.

Another situation is where I can think of the logic as a base case with variants.
The base case may be the most common or most straightforward. I can put this
logic into a superclass which allows me to reason about it without having to
worry about the variants. I then put each variant case into a subclass, which I
express with code that emphasizes its difference from the base case.

Polymorphism is one of the key features of object-oriented programming—and,
like any useful feature, it’s prone to overuse. I’ve come across people who argue
that all examples of conditional logic should be replaced with polymorphism. I
don’t agree with that view. Most of my conditional logic uses basic conditional
statements—if/else and switch/case. But when I see complex conditional logic
that can be improved as discussed above, I find polymorphism a powerful tool.

Mechanics

If classes do not exist for polymorphic behavior, create them together with
a factory function to return the correct instance.

Use the factory function in calling code.

Move the conditional function to the superclass.

If the conditional logic is not a self-contained function, use Extract Function (106)
to make it so.

Pick one of the subclasses. Create a subclass method that overrides the
conditional statement method. Copy the body of that leg of the conditional
statement into the subclass method and adjust it to fit.

Repeat for each leg of the conditional.

Leave a default case for the superclass method. Or, if superclass should be
abstract, declare that method as abstract or throw an error to show it should
be the responsibility of a subclass.

273Replace Conditional with Polymorphism

ptg26261585

Example

My friend has a collection of birds and wants to know how fast they can fly and
what they have for plumage. So we have a couple of small programs to determine
the information.

function plumages(birds) {
 return new Map(birds.map(b => [b.name, plumage(b)]));
 }
function speeds(birds) {

 return new Map(birds.map(b => [b.name, airSpeedVelocity(b)]));
 }

function plumage(bird) {
 switch (bird.type) {
 case 'EuropeanSwallow':
 return "average";
 case 'AfricanSwallow':
 return (bird.numberOfCoconuts > 2) ? "tired" : "average";
 case 'NorwegianBlueParrot':
 return (bird.voltage > 100) ? "scorched" : "beautiful";
 default:
 return "unknown";
 }
 }

function airSpeedVelocity(bird) {
 switch (bird.type) {
 case 'EuropeanSwallow':
 return 35;
 case 'AfricanSwallow':
 return 40 - 2 * bird.numberOfCoconuts;
 case 'NorwegianBlueParrot':
 return (bird.isNailed) ? 0 : 10 + bird.voltage / 10;
 default:
 return null;
 }
 }

We have a couple of different operations that vary with the type of bird, so it
makes sense to create classes and use polymorphism for any type-specific behavior.

I begin by using Combine Functions into Class (144) on airSpeedVelocity and plumage.

 function plumage(bird) {
 return new Bird(bird).plumage;
 }

 function airSpeedVelocity(bird) {
 return new Bird(bird).airSpeedVelocity;
 }

Chapter 10 Simplifying Conditional Logic274

ptg26261585

class Bird {
 constructor(birdObject) {
 Object.assign(this, birdObject);
 }

get plumage() {
 switch (this.type) {
 case 'EuropeanSwallow':
 return "average";
 case 'AfricanSwallow':
 return (this.numberOfCoconuts > 2) ? "tired" : "average";
 case 'NorwegianBlueParrot':
 return (this.voltage > 100) ? "scorched" : "beautiful";
 default:
 return "unknown";
 }
 }

get airSpeedVelocity() {
 switch (this.type) {
 case 'EuropeanSwallow':
 return 35;
 case 'AfricanSwallow':
 return 40 - 2 * this.numberOfCoconuts;
 case 'NorwegianBlueParrot':
 return (this.isNailed) ? 0 : 10 + this.voltage / 10;
 default:
 return null;
 }
 }
 }

I now add subclasses for each kind of bird, together with a factory function to
instantiate the appropriate subclass.

 function plumage(bird) {
 return createBird(bird).plumage;
 }

 function airSpeedVelocity(bird) {
 return createBird(bird).airSpeedVelocity;
 }

 function createBird(bird) {
 switch (bird.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallow(bird);
 case 'AfricanSwallow':
 return new AfricanSwallow(bird);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrot(bird);
 default:
 return new Bird(bird);
 }
 }

275Replace Conditional with Polymorphism

ptg26261585

 class EuropeanSwallow extends Bird {
 }

 class AfricanSwallow extends Bird {
 }

 class NorwegianBlueParrot extends Bird {
 }

Now that I’ve created the class structure that I need, I can begin on the two
conditional methods. I’ll begin with plumage. I take one leg of the switch
statement and override it in the appropriate subclass.

class EuropeanSwallow…
 get plumage() {
 return "average";
 }

class Bird…
 get plumage() {
 switch (this.type) {
 case 'EuropeanSwallow':
 throw "oops";
 case 'AfricanSwallow':
 return (this.numberOfCoconuts > 2) ? "tired" : "average";
 case 'NorwegianBlueParrot':
 return (this.voltage > 100) ? "scorched" : "beautiful";
 default:
 return "unknown";
 }
 }

I put in the throw because I’m paranoid.

I can compile and test at this point. Then, if all is well, I do the next leg.

class AfricanSwallow…
 get plumage() {
 return (this.numberOfCoconuts > 2) ? "tired" : "average";
 }

Then, the Norwegian Blue:

class NorwegianBlueParrot…
 get plumage() {
 return (this.voltage > 100) ? "scorched" : "beautiful";
 }

I leave the superclass method for the default case.

Chapter 10 Simplifying Conditional Logic276

ptg26261585

class Bird…
 get plumage() {
 return "unknown";
 }

I repeat the same process for airSpeedVelocity. Once I’m done, I end up with the
following code (I also inlined the top-level functions for airSpeedVelocity and plumage):

function plumages(birds) {
 return new Map(birds
 .map(b => createBird(b))
 .map(bird => [bird.name, bird.plumage]));
 }
function speeds(birds) {

 return new Map(birds
 .map(b => createBird(b))
 .map(bird => [bird.name, bird.airSpeedVelocity]));
 }

function createBird(bird) {
 switch (bird.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallow(bird);
 case 'AfricanSwallow':
 return new AfricanSwallow(bird);
 case 'NorwegianBlueParrot':
 return new NorwegianBlueParrot(bird);
 default:
 return new Bird(bird);
 }
 }

class Bird {
 constructor(birdObject) {
 Object.assign(this, birdObject);
 }

get plumage() {
 return "unknown";
 }

get airSpeedVelocity() {
 return null;
 }
 }
class EuropeanSwallow extends Bird {
get plumage() {

 return "average";
 }

get airSpeedVelocity() {
 return 35;
 }
 }

277Replace Conditional with Polymorphism

ptg26261585

class AfricanSwallow extends Bird {
get plumage() {

 return (this.numberOfCoconuts > 2) ? "tired" : "average";
 }

get airSpeedVelocity() {
 return 40 - 2 * this.numberOfCoconuts;
 }
 }
class NorwegianBlueParrot extends Bird {
get plumage() {

 return (this.voltage > 100) ? "scorched" : "beautiful";
 }

get airSpeedVelocity() {
 return (this.isNailed) ? 0 : 10 + this.voltage / 10;
 }
 }

Looking at this final code, I can see that the superclass Bird isn’t strictly needed.
In JavaScript, I don’t need a type hierarchy for polymorphism; as long as my ob-
jects implement the appropriately named methods, everything works fine. In this
situation, however, I like to keep the unnecessary superclass as it helps explain
the way the classes are related in the domain.

Example: Using Polymorphism for Variation

With the birds example, I’m using a clear generalization hierarchy. That’s how
subclassing and polymorphism is often discussed in textbooks (including
mine)—but it’s not the only way inheritance is used in practice; indeed, it probably
isn’t the most common or best way. Another case for inheritance is when I wish
to indicate that one object is mostly similar to another, but with some variations.

As an example of this case, consider some code used by a rating agency to
compute an investment rating for the voyages of sailing ships. The rating agency
gives out either an “A” or “B” rating, depending of various factors due to risk and
profit potential. The risk comes from assessing the nature of the voyage as well
as the history of the captain’s prior voyages.

function rating(voyage, history) {
 const vpf = voyageProfitFactor(voyage, history);
 const vr = voyageRisk(voyage);
 const chr = captainHistoryRisk(voyage, history);
 if (vpf * 3 > (vr + chr * 2)) return "A";
 else return "B";
 }

Chapter 10 Simplifying Conditional Logic278

ptg26261585

function voyageRisk(voyage) {
 let result = 1;
 if (voyage.length > 4) result += 2;
 if (voyage.length > 8) result += voyage.length - 8;
 if (["china", "east-indies"].includes(voyage.zone)) result += 4;
 return Math.max(result, 0);
 }
function captainHistoryRisk(voyage, history) {

 let result = 1;
 if (history.length < 5) result += 4;
 result += history.filter(v => v.profit < 0).length;
 if (voyage.zone === "china" && hasChina(history)) result -= 2;
 return Math.max(result, 0);
 }
function hasChina(history) {

 return history.some(v => "china" === v.zone);
 }
function voyageProfitFactor(voyage, history) {

 let result = 2;
 if (voyage.zone === "china") result += 1;
 if (voyage.zone === "east-indies") result += 1;
 if (voyage.zone === "china" && hasChina(history)) {
 result += 3;
 if (history.length > 10) result += 1;
 if (voyage.length > 12) result += 1;
 if (voyage.length > 18) result -= 1;
 }
 else {
 if (history.length > 8) result += 1;
 if (voyage.length > 14) result -= 1;
 }
 return result;
 }

The functions voyageRisk and captainHistoryRisk score points for risk, voyageProfitFactor
scores points for the potential profit, and rating combines these to give the overall
rating for the voyage.

The calling code would look something like this:

 const voyage = {zone: "west-indies", length: 10};
 const history = [
 {zone: "east-indies", profit: 5},
 {zone: "west-indies", profit: 15},
 {zone: "china", profit: -2},
 {zone: "west-africa", profit: 7},
];

 const myRating = rating(voyage, history);

279Replace Conditional with Polymorphism

ptg26261585

What I want to focus on here is how a couple of places use conditional logic
to handle the case of a voyage to China where the captain has been to China
before.

 function rating(voyage, history) {
 const vpf = voyageProfitFactor(voyage, history);
 const vr = voyageRisk(voyage);
 const chr = captainHistoryRisk(voyage, history);
 if (vpf * 3 > (vr + chr * 2)) return "A";
 else return "B";
 }
 function voyageRisk(voyage) {
 let result = 1;
 if (voyage.length > 4) result += 2;
 if (voyage.length > 8) result += voyage.length - 8;
 if (["china", "east-indies"].includes(voyage.zone)) result += 4;
 return Math.max(result, 0);
 }
 function captainHistoryRisk(voyage, history) {
 let result = 1;
 if (history.length < 5) result += 4;
 result += history.filter(v => v.profit < 0).length;

if (voyage.zone === "china" && hasChina(history)) result -= 2;
 return Math.max(result, 0);
 }
 function hasChina(history) {
 return history.some(v => "china" === v.zone);
 }
 function voyageProfitFactor(voyage, history) {
 let result = 2;
 if (voyage.zone === "china") result += 1;
 if (voyage.zone === "east-indies") result += 1;

if (voyage.zone === "china" && hasChina(history)) {
 result += 3;
 if (history.length > 10) result += 1;
 if (voyage.length > 12) result += 1;
 if (voyage.length > 18) result -= 1;
 }
 else {
 if (history.length > 8) result += 1;
 if (voyage.length > 14) result -= 1;
 }
 return result;
 }

I will use inheritance and polymorphism to separate out the logic for handling
these cases from the base logic. This is a particularly useful refactoring if I’m
about to introduce more special logic for this case—and the logic for these repeat
China voyages can make it harder to understand the base case.

Chapter 10 Simplifying Conditional Logic280

ptg26261585

I’m beginning with a set of functions. To introduce polymorphism, I need to
create a class structure, so I begin by applying Combine Functions into Class (144).
This results in the following code:

function rating(voyage, history) {
 return new Rating(voyage, history).value;
 }

class Rating {
 constructor(voyage, history) {
 this.voyage = voyage;
 this.history = history;
 }

get value() {
 const vpf = this.voyageProfitFactor;
 const vr = this.voyageRisk;
 const chr = this.captainHistoryRisk;
 if (vpf * 3 > (vr + chr * 2)) return "A";
 else return "B";
 }

get voyageRisk() {
 let result = 1;
 if (this.voyage.length > 4) result += 2;
 if (this.voyage.length > 8) result += this.voyage.length - 8;
 if (["china", "east-indies"].includes(this.voyage.zone)) result += 4;
 return Math.max(result, 0);
 }

get captainHistoryRisk() {
 let result = 1;
 if (this.history.length < 5) result += 4;
 result += this.history.filter(v => v.profit < 0).length;
 if (this.voyage.zone === "china" && this.hasChinaHistory) result -= 2;
 return Math.max(result, 0);
 }

get voyageProfitFactor() {
 let result = 2;

 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 if (this.voyage.zone === "china" && this.hasChinaHistory) {
 result += 3;
 if (this.history.length > 10) result += 1;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 }
 else {
 if (this.history.length > 8) result += 1;
 if (this.voyage.length > 14) result -= 1;
 }
 return result;
 }

281Replace Conditional with Polymorphism

ptg26261585

get hasChinaHistory() {
 return this.history.some(v => "china" === v.zone);
 }
 }

That’s given me the class for the base case. I now need to create an empty
subclass to house the variant behavior.

 class ExperiencedChinaRating extends Rating {
 }

I then create a factory function to return the variant class when needed.

 function createRating(voyage, history) {
 if (voyage.zone === "china" && history.some(v => "china" === v.zone))
 return new ExperiencedChinaRating(voyage, history);
 else return new Rating(voyage, history);
 }

I need to modify any callers to use the factory function instead of directly
invoking the constructor, which in this case is just the rating function.

 function rating(voyage, history) {
 return createRating(voyage, history).value;
 }

There are two bits of behavior I need to move into a subclass. I begin with the
logic in captainHistoryRisk:

class Rating…
 get captainHistoryRisk() {
 let result = 1;
 if (this.history.length < 5) result += 4;
 result += this.history.filter(v => v.profit < 0).length;
 if (this.voyage.zone === "china" && this.hasChinaHistory) result -= 2;
 return Math.max(result, 0);
 }

I write the overriding method in the subclass:

class ExperiencedChinaRating
 get captainHistoryRisk() {
 const result = super.captainHistoryRisk - 2;
 return Math.max(result, 0);
 }

Chapter 10 Simplifying Conditional Logic282

ptg26261585

class Rating…
 get captainHistoryRisk() {
 let result = 1;
 if (this.history.length < 5) result += 4;
 result += this.history.filter(v => v.profit < 0).length;

if (this.voyage.zone === "china" && this.hasChinaHistory) result -= 2;
 return Math.max(result, 0);
 }

Separating the variant behavior from voyageProfitFactor is a bit more messy. I can’t
simply remove the variant behavior and call the superclass method since there
is an alternative path here. I also don’t want to copy the whole superclass method
down to the subclass.

class Rating…
 get voyageProfitFactor() {
 let result = 2;

 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 if (this.voyage.zone === "china" && this.hasChinaHistory) {
 result += 3;
 if (this.history.length > 10) result += 1;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 }
 else {
 if (this.history.length > 8) result += 1;
 if (this.voyage.length > 14) result -= 1;
 }
 return result;
 }

So my response is to first use Extract Function (106) on the entire conditional
block.

class Rating…
 get voyageProfitFactor() {
 let result = 2;

 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 result += this.voyageAndHistoryLengthFactor;
 return result;
 }

283Replace Conditional with Polymorphism

ptg26261585

 get voyageAndHistoryLengthFactor() {
 let result = 0;
 if (this.voyage.zone === "china" && this.hasChinaHistory) {
 result += 3;
 if (this.history.length > 10) result += 1;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 }
 else {
 if (this.history.length > 8) result += 1;
 if (this.voyage.length > 14) result -= 1;
 }
 return result;
 }

A function name with an “And” in it is a pretty bad smell, but I’ll let it sit and
reek for a moment, while I apply the subclassing.

class Rating…
 get voyageAndHistoryLengthFactor() {
 let result = 0;
 if (this.history.length > 8) result += 1;
 if (this.voyage.length > 14) result -= 1;
 return result;
 }

class ExperiencedChinaRating…
 get voyageAndHistoryLengthFactor() {
 let result = 0;
 result += 3;
 if (this.history.length > 10) result += 1;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }

That’s, formally, the end of the refactoring—I’ve separated the variant behavior
out into the subclass. The superclass’s logic is simpler to understand and work
with, and I only need to deal with variant case when I’m working on the subclass
code, which is expressed in terms of its difference with the superclass.

But I feel I should at least outline what I’d do with the awkward new method.
Introducing a method purely for overriding by a subclass is a common thing to
do when doing this kind of base-and-variation inheritance. But a crude method
like this obscures what’s going on, instead of revealing.

The “And” gives away that there are really two separate modifications going
on here—so I think it’s wise to separate them. I’ll do this by using Extract Function

Chapter 10 Simplifying Conditional Logic284

ptg26261585

(106) on the history length modification, both in the superclass and subclass. I
start with just the superclass:

class Rating…
 get voyageAndHistoryLengthFactor() {
 let result = 0;
 result += this.historyLengthFactor;
 if (this.voyage.length > 14) result -= 1;
 return result;
 }
 get historyLengthFactor() {
 return (this.history.length > 8) ? 1 : 0;
 }

I do the same with the subclass:

class ExperiencedChinaRating…
 get voyageAndHistoryLengthFactor() {
 let result = 0;
 result += 3;
 result += this.historyLengthFactor;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }
 get historyLengthFactor() {
 return (this.history.length > 10) ? 1 : 0;
 }

I can then use Move Statements to Callers (217) on the superclass case.

class Rating…
 get voyageProfitFactor() {
 let result = 2;
 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 result += this.historyLengthFactor;
 result += this.voyageAndHistoryLengthFactor;
 return result;
 }

 get voyageAndHistoryLengthFactor() {
 let result = 0;

result += this.historyLengthFactor;
 if (this.voyage.length > 14) result -= 1;
 return result;
 }

285Replace Conditional with Polymorphism

ptg26261585

class ExperiencedChinaRating…
 get voyageAndHistoryLengthFactor() {
 let result = 0;
 result += 3;

result += this.historyLengthFactor;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }

I’d then use Rename Function (124).

class Rating…
 get voyageProfitFactor() {
 let result = 2;
 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 result += this.historyLengthFactor;
 result += this.voyageLengthFactor;
 return result;
 }

 get voyageLengthFactor() {
 return (this.voyage.length > 14) ? - 1: 0;
 }

Changing to a ternary to simplify voyageLengthFactor.

class ExperiencedChinaRating…
 get voyageLengthFactor() {
 let result = 0;
 result += 3;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }

One last thing. I don’t think adding 3 points makes sense as part of the voyage
length factor—it’s better added to the overall result.

class ExperiencedChinaRating…
 get voyageProfitFactor() {
 return super.voyageProfitFactor + 3;
 }

 get voyageLengthFactor() {
 let result = 0;

result += 3;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }

Chapter 10 Simplifying Conditional Logic286

ptg26261585

At the end of the refactoring, I have the following code. First, there is the basic
rating class which can ignore any complications of the experienced China case:

class Rating {
 constructor(voyage, history) {
 this.voyage = voyage;
 this.history = history;
 }

get value() {
 const vpf = this.voyageProfitFactor;
 const vr = this.voyageRisk;
 const chr = this.captainHistoryRisk;
 if (vpf * 3 > (vr + chr * 2)) return "A";
 else return "B";
 }

get voyageRisk() {
 let result = 1;
 if (this.voyage.length > 4) result += 2;
 if (this.voyage.length > 8) result += this.voyage.length - 8;
 if (["china", "east-indies"].includes(this.voyage.zone)) result += 4;
 return Math.max(result, 0);
 }

get captainHistoryRisk() {
 let result = 1;
 if (this.history.length < 5) result += 4;
 result += this.history.filter(v => v.profit < 0).length;
 return Math.max(result, 0);
 }

get voyageProfitFactor() {
 let result = 2;
 if (this.voyage.zone === "china") result += 1;
 if (this.voyage.zone === "east-indies") result += 1;
 result += this.historyLengthFactor;
 result += this.voyageLengthFactor;
 return result;
 }

get voyageLengthFactor() {
 return (this.voyage.length > 14) ? - 1: 0;
 }

get historyLengthFactor() {
 return (this.history.length > 8) ? 1 : 0;
 }
 }

The code for the experienced China case reads as a set of variations on the base:

287Replace Conditional with Polymorphism

ptg26261585

class ExperiencedChinaRating extends Rating {
get captainHistoryRisk() {

 const result = super.captainHistoryRisk - 2;
 return Math.max(result, 0);
 }

get voyageLengthFactor() {
 let result = 0;
 if (this.voyage.length > 12) result += 1;
 if (this.voyage.length > 18) result -= 1;
 return result;
 }

get historyLengthFactor() {
 return (this.history.length > 10) ? 1 : 0;
 }

get voyageProfitFactor() {
 return super.voyageProfitFactor + 3;
 }
 }

Chapter 10 Simplifying Conditional Logic288

ptg26261585

Introduce Special Case
formerly: Introduce Null Object

if (aCustomer === "unknown") customerName = "occupant";

class UnknownCustomer {
 get name() {return "occupant";}

Motivation

A common case of duplicated code is when many users of a data structure check
a specific value, and then most of them do the same thing. If I find many parts
of the code base having the same reaction to a particular value, I want to bring
that reaction into a single place.

A good mechanism for this is the Special Case pattern where I create a special-
case element that captures all the common behavior. This allows me to replace
most of the special-case checks with simple calls.

A special case can manifest itself in several ways. If all I’m doing with the object
is reading data, I can supply a literal object with all the values I need filled in.
If I need more behavior than simple values, I can create a special object with
methods for all the common behavior. The special-case object can be returned
by an encapsulating class, or inserted into a data structure with a transform.

A common value that needs special-case processing is null, which is why this
pattern is often called the Null Object pattern. But it’s the same approach for any
special case—I like to say that Null Object is a special case of Special Case.

Mechanics

Begin with a container data structure (or class) that contains a property which
is the subject of the refactoring. Clients of the container compare the subject

289Introduce Special Case

ptg26261585

property of the container to a special-case value. We wish to replace the
special-case value of the subject with a special case class or data structure.

Add a special-case check property to the subject, returning false.

Create a special-case object with only the special-case check property,
returning true.

Apply Extract Function (106) to the special-case comparison code. Ensure that
all clients use the new function instead of directly comparing it.

Introduce the new special-case subject into the code, either by returning it
from a function call or by applying a transform function.

Change the body of the special-case comparison function so that it uses the
special-case check property.

Test.

Use Combine Functions into Class (144) or Combine Functions into Transform
(149) to move all of the common special-case behavior into the new element.

Since the special-case class usually returns fixed values to simple requests, these
may be handled by making the special case a literal record.

Use Inline Function (115) on the special-case comparison function for the
places where it’s still needed.

Example

A utility company installs its services in sites.

class Site…
 get customer() {return this._customer;}

There are various properties of the customer class; I’ll consider three of them.

class Customer…
 get name() {...}
 get billingPlan() {...}
 set billingPlan(arg) {...}
 get paymentHistory() {...}

Most of the time, a site has a customer, but sometimes there isn’t one. Someone
may have moved out and I don’t yet know who, if anyone, has moved in. When
this happens, the data record fills the customer field with the string “unknown”.
Because this can happen, clients of the site need to be able to handle an unknown
customer. Here are some example fragments:

Chapter 10 Simplifying Conditional Logic290

ptg26261585

client 1…
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 let customerName;
 if (aCustomer === "unknown") customerName = "occupant";
 else customerName = aCustomer.name;

client 2…
 const plan = (aCustomer === "unknown") ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 if (aCustomer !== "unknown") aCustomer.billingPlan = newPlan;

client 4…
 const weeksDelinquent = (aCustomer === "unknown") ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

Looking through the code base, I see many clients of the site object that have
to deal with an unknown customer. Most of them do the same thing when they
get one: They use “occupant” as the name, give them a basic billing plan, and
class them as zero-weeks delinquent. This widespread testing for a special case,
plus a common response, is what tells me it’s time for a Special Case Object.

I begin by adding a method to the customer to indicate it is unknown.

class Customer…
 get isUnknown() {return false;}

I then add an Unknown Customer class.

class UnknownCustomer {
 get isUnknown() {return true;}
}

Note that I don’t make UnknownCustomer a subclass of Customer. In other languages, particu-
larly those statically typed, I would, but JavaScript’s rules for subclassing, as well as its
dynamic typing, make it better to not do that here.

Now comes the tricky bit. I have to return this new special-case object when-
ever I expect "unknown" and change each test for an unknown value to use the new
isUnknown method. In general, I always want to arrange things so I can make one
small change at a time, then test. But if I change the customer class to return an
unknown customer instead of “unknown”, I have to make every client testing for
“unknown” to call isUnknown—and I have to do it all at once. I find that as appealing
as eating liver (i.e., not at all).

291Introduce Special Case

ptg26261585

There is a common technique to use whenever I find myself in this bind. I use
Extract Function (106) on the code that I’d have to change in lots of places—in
this case, the special-case comparison code.

function isUnknown(arg) {
 if (!((arg instanceof Customer) || (arg === "unknown")))
 throw new Error(`investigate bad value: <${arg}>`);
 return (arg === "unknown");
}

I’ve put a trap in here for an unexpected value. This can help me to spot any mistakes
or odd behavior as I’m doing this refactoring.

I can now use this function whenever I’m testing for an unknown customer. I
can change these calls one at a time, testing after each change.

client 1…
 let customerName;
 if (isUnknown(aCustomer)) customerName = "occupant";
 else customerName = aCustomer.name;

After a while, I have done them all.

client 2…
 const plan = (isUnknown(aCustomer)) ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 if (!isUnknown(aCustomer)) aCustomer.billingPlan = newPlan;

client 4…
 const weeksDelinquent = isUnknown(aCustomer) ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

Once I’ve changed all the callers to use isUnknown, I can change the site class to
return an unknown customer.

class Site…
 get customer() {
 return (this._customer === "unknown") ? new UnknownCustomer() : this._customer;
 }

I can check that I’m no longer using the “unknown” string by changing isUnknown
to use the unknown value.

Chapter 10 Simplifying Conditional Logic292

ptg26261585

client 1…
 function isUnknown(arg) {
 if (!(arg instanceof Customer || arg instanceof UnknownCustomer))
 throw new Error(`investigate bad value: <${arg}>`);
 return arg.isUnknown;
 }

I test to ensure that’s all working.
Now the fun begins. I can use Combine Functions into Class (144) to take each

client’s special-case check and see if I can replace it with a commonly expected
value. At the moment, I have various clients using “occupant” for the name of
an unknown customer, like this:

client 1…
 let customerName;
 if (isUnknown(aCustomer)) customerName = "occupant";
 else customerName = aCustomer.name;

I add a suitable method to the unknown customer:

class UnknownCustomer…
 get name() {return "occupant";}

Now I can make all that conditional code go away.

client 1…
 const customerName = aCustomer.name;

Once I’ve tested that this works, I’ll probably be able to use Inline Variable (123)
on that variable too.

Next is the billing plan property.

client 2…
 const plan = (isUnknown(aCustomer)) ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 if (!isUnknown(aCustomer)) aCustomer.billingPlan = newPlan;

For read behavior, I do the same thing I did with the name—take the common
response and reply with it. With the write behavior, the current code doesn’t call
the setter for an unknown customer—so for the special case, I let the setter be
called, but it does nothing.

293Introduce Special Case

ptg26261585

class UnknownCustomer…
 get billingPlan() {return registry.billingPlans.basic;}
 set billingPlan(arg) { /* ignore */ }

client reader…
 const plan = aCustomer.billingPlan;

client writer…
 aCustomer.billingPlan = newPlan;

Special-case objects are value objects, and thus should always be immutable,
even if the objects they are substituting for are not.

The last case is a bit more involved because the special case needs to return
another object that has its own properties.

client…
 const weeksDelinquent = isUnknown(aCustomer) ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

The general rule with a special-case object is that if it needs to return related
objects, they are usually special cases themselves. So here I need to create a null
payment history.

class UnknownCustomer…
 get paymentHistory() {return new NullPaymentHistory();}

class NullPaymentHistory…
 get weeksDelinquentInLastYear() {return 0;}

client…
 const weeksDelinquent = aCustomer.paymentHistory.weeksDelinquentInLastYear;

I carry on, looking at all the clients to see if I can replace them with the poly-
morphic behavior. But there will be exceptions—clients that want to do something
different with the special case. I may have 23 clients that use “occupant” for the
name of an unknown customer, but there’s always one that needs something
different.

client…
 const name = ! isUnknown(aCustomer) ? aCustomer.name : "unknown occupant";

In that case, I need to retain a special-case check. I will change it to use the
method on customer, essentially using Inline Function (115) on isUnknown.

client…
 const name = aCustomer.isUnknown ? "unknown occupant" : aCustomer.name;

Chapter 10 Simplifying Conditional Logic294

ptg26261585

When I’m done with all the clients, I should be able to use Remove Dead Code
(237) on the global isPresent function, as nobody should be calling it any more.

Example: Using an Object Literal

Creating a class like this is a fair bit of work for what is really a simple value.
But for the example I gave, I had to make the class since the customer could be
updated. If, however, I only read the data structure, I can use a literal object
instead.

Here is the opening case again—just the same, except this time there is no
client that updates the customer:

class Site…
 get customer() {return this._customer;}

class Customer…
 get name() {...}
 get billingPlan() {...}
 set billingPlan(arg) {...}
 get paymentHistory() {...}

client 1…
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 let customerName;
 if (aCustomer === "unknown") customerName = "occupant";
 else customerName = aCustomer.name;

client 2…
 const plan = (aCustomer === "unknown") ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 const weeksDelinquent = (aCustomer === "unknown") ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

As with the previous case, I start by adding an isUnknown property to the customer
and creating a special-case object with that field. The difference is that this time,
the special case is a literal.

class Customer…
 get isUnknown() {return false;}

295Introduce Special Case

ptg26261585

top level…
 function createUnknownCustomer() {
 return {
 isUnknown: true,
 };
 }

I apply Extract Function (106) to the special case condition test.

function isUnknown(arg) {
 return (arg === "unknown");
}

client 1…
 let customerName;
 if (isUnknown(aCustomer)) customerName = "occupant";
 else customerName = aCustomer.name;

client 2…
 const plan = isUnknown(aCustomer) ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 const weeksDelinquent = isUnknown(aCustomer) ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

I change the site class and the condition test to work with the special case.

class Site…
 get customer() {
 return (this._customer === "unknown") ? createUnknownCustomer() : this._customer;
 }

top level…
 function isUnknown(arg) {
 return arg.isUnknown;
 }

Then I replace each standard response with the appropriate literal value. I start
with the name:

function createUnknownCustomer() {
 return {
 isUnknown: true,
 name: "occupant",
 };
}

Chapter 10 Simplifying Conditional Logic296

ptg26261585

client 1…
 const customerName = aCustomer.name;

Then, the billing plan:

function createUnknownCustomer() {
 return {
 isUnknown: true,
 name: "occupant",
 billingPlan: registry.billingPlans.basic,
 };
}

client 2…
 const plan = aCustomer.billingPlan;

Similarly, I can create a nested null payment history with the literal:

function createUnknownCustomer() {
 return {
 isUnknown: true,
 name: "occupant",
 billingPlan: registry.billingPlans.basic,
 paymentHistory: {
 weeksDelinquentInLastYear: 0,
 },
 };
}

client 3…
 const weeksDelinquent = aCustomer.paymentHistory.weeksDelinquentInLastYear;

If I use a literal like this, I should make it immutable, which I might do with
freeze. Usually, I’d rather use a class.

Example: Using a Transform

Both previous cases involve a class, but the same idea can be applied to a record
by using a transform step.

Let’s assume our input is a simple record structure that looks something
like this:

297Introduce Special Case

ptg26261585

{
 name: "Acme Boston",
 location: "Malden MA",
 // more site details
 customer: {
 name: "Acme Industries",
 billingPlan: "plan-451",
 paymentHistory: {
 weeksDelinquentInLastYear: 7
 //more
 },
 // more
 }
}

In some cases, the customer isn’t known, and such cases are marked in the
same way:

{
 name: "Warehouse Unit 15",
 location: "Malden MA",
 // more site details
 customer: "unknown",
}

I have similar client code that checks for the unknown customer:

client 1…
 const site = acquireSiteData();
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 let customerName;
 if (aCustomer === "unknown") customerName = "occupant";
 else customerName = aCustomer.name;

client 2…
 const plan = (aCustomer === "unknown") ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 const weeksDelinquent = (aCustomer === "unknown") ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

My first step is to run the site data structure through a transform that, currently,
does nothing but a deep copy.

Chapter 10 Simplifying Conditional Logic298

ptg26261585

client 1…
 const rawSite = acquireSiteData();
 const site = enrichSite(rawSite);
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 let customerName;
 if (aCustomer === "unknown") customerName = "occupant";
 else customerName = aCustomer.name;

function enrichSite(inputSite) {
 return _.cloneDeep(inputSite);
}

I apply Extract Function (106) to the test for an unknown customer.

function isUnknown(aCustomer) {
 return aCustomer === "unknown";
}

client 1…
 const rawSite = acquireSiteData();
 const site = enrichSite(rawSite);
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 let customerName;
 if (isUnknown(aCustomer)) customerName = "occupant";
 else customerName = aCustomer.name;

client 2…
 const plan = (isUnknown(aCustomer)) ?
 registry.billingPlans.basic
 : aCustomer.billingPlan;

client 3…
 const weeksDelinquent = (isUnknown(aCustomer)) ?
 0
 : aCustomer.paymentHistory.weeksDelinquentInLastYear;

I begin the enrichment by adding an isUnknown property to the customer.

function enrichSite(aSite) {
 const result = _.cloneDeep(aSite);
 const unknownCustomer = {
 isUnknown: true,
 };

 if (isUnknown(result.customer)) result.customer = unknownCustomer;
 else result.customer.isUnknown = false;
 return result;
}

299Introduce Special Case

ptg26261585

I can then modify the special-case condition test to include probing for this
new property. I keep the original test as well, so that the test will work on both
raw and enriched sites.

function isUnknown(aCustomer) {
 if (aCustomer === "unknown") return true;
 else return aCustomer.isUnknown;
}

I test to ensure that’s all OK, then start applying Combine Functions into Transform
(149) on the special case. First, I move the choice of name into the enrichment
function.

function enrichSite(aSite) {
 const result = _.cloneDeep(aSite);
 const unknownCustomer = {
 isUnknown: true,
 name: "occupant",
 };

 if (isUnknown(result.customer)) result.customer = unknownCustomer;
 else result.customer.isUnknown = false;
 return result;
}

client 1…
 const rawSite = acquireSiteData();
 const site = enrichSite(rawSite);
 const aCustomer = site.customer;
 // ... lots of intervening code ...
 const customerName = aCustomer.name;

I test, then do the billing plan.

function enrichSite(aSite) {
 const result = _.cloneDeep(aSite);
 const unknownCustomer = {
 isUnknown: true,
 name: "occupant",
 billingPlan: registry.billingPlans.basic,
 };

 if (isUnknown(result.customer)) result.customer = unknownCustomer;
 else result.customer.isUnknown = false;
 return result;
}

client 2…
 const plan = aCustomer.billingPlan;

I test again, then do the last client.

Chapter 10 Simplifying Conditional Logic300

ptg26261585

function enrichSite(aSite) {
 const result = _.cloneDeep(aSite);
 const unknownCustomer = {
 isUnknown: true,
 name: "occupant",
 billingPlan: registry.billingPlans.basic,
 paymentHistory: {
 weeksDelinquentInLastYear: 0,
 }
 };

 if (isUnknown(result.customer)) result.customer = unknownCustomer;
 else result.customer.isUnknown = false;
 return result;
}

client 3…
 const weeksDelinquent = aCustomer.paymentHistory.weeksDelinquentInLastYear;

301Introduce Special Case

ptg26261585

Introduce Assertion

if (this.discountRate)
 base = base - (this.discountRate * base);

assert(this.discountRate >= 0);
if (this.discountRate)
 base = base - (this.discountRate * base);

Motivation

Often, sections of code work only if certain conditions are true. This may be as
simple as a square root calculation only working on a positive input value. With
an object, it may require that at least one of a group of fields has a value in it.

Such assumptions are often not stated but can only be deduced by looking
through an algorithm. Sometimes, the assumptions are stated with a comment.
A better technique is to make the assumption explicit by writing an assertion.

An assertion is a conditional statement that is assumed to be always true.
Failure of an assertion indicates a programmer error. Assertion failures should
never be checked by other parts of the system. Assertions should be written so
that the program functions equally correctly if they are all removed; indeed, some
languages provide assertions that can be disabled by a compile-time switch.

I often see people encourage using assertions in order to find errors. While
this is certainly a Good Thing, it’s not the only reason to use them. I find asser-
tions to be a valuable form of communication—they tell the reader something
about the assumed state of the program at this point of execution. I also find
them handy for debugging, and their communication value means I’m inclined
to leave them in once I’ve fixed the error I’m chasing. Self-testing code reduces
their value for debugging, as steadily narrowing unit tests often do the job better,
but I still like assertions for communication.

Chapter 10 Simplifying Conditional Logic302

ptg26261585

Mechanics

When you see that a condition is assumed to be true, add an assertion to
state it.

Since assertions should not affect the running of a system, adding one is always
behavior-preserving.

Example

Here’s a simple tale of discounts. A customer can be given a discount rate to
apply to all their purchases:

class Customer…
 applyDiscount(aNumber) {
 return (this.discountRate)
 ? aNumber - (this.discountRate * aNumber)
 : aNumber;
 }

There’s an assumption here that the discount rate is a positive number. I can
make that assumption explicit by using an assertion. But I can’t easily place
an assertion into a ternary expression, so first I’ll reformulate it as an if-then
statement.

class Customer…
 applyDiscount(aNumber) {
 if (!this.discountRate) return aNumber;
 else return aNumber - (this.discountRate * aNumber);
 }

Now I can easily add the assertion.

class Customer…
 applyDiscount(aNumber) {
 if (!this.discountRate) return aNumber;
 else {
 assert(this.discountRate >= 0);
 return aNumber - (this.discountRate * aNumber);
 }
 }

In this case, I’d rather put this assertion into the setting method. If the assertion
fails in applyDiscount, my first puzzle is how it got into the field in the first place.

303Introduce Assertion

ptg26261585

class Customer…
 set discountRate(aNumber) {
 assert(null === aNumber || aNumber >= 0);
 this._discountRate = aNumber;
 }

An assertion like this can be particularly valuable if it’s hard to spot the error
source—which may be an errant minus sign in some input data or some inversion
elsewhere in the code.

There is a real danger of overusing assertions. I don’t use assertions to check
everything that I think is true, but only to check things that need to be true. Du-
plication is a particular problem, as it’s common to tweak these kinds of condi-
tions. So I find it’s essential to remove any duplication in these conditions, usually
by a liberal use of Extract Function (106).

I only use assertions for things that are programmer errors. If I’m reading data
from an external source, any value checking should be a first-class part of the
program, not an assertion—unless I’m really confident in the external source.
Assertions are a last resort to help track bugs—though, ironically, I only use them
when I think they should never fail.

Chapter 10 Simplifying Conditional Logic304

ptg26261585

Modules and their functions are the building blocks of our software. APIs are
the joints that we use to plug them together. Making these APIs easy to under-
stand and use is important but also difficult: I need to refactor them as I learn
how to improve them.

A good API clearly separates any functions that update data from those that
only read data. If I see them combined, I use Separate Query from Modifier (306)
to tease them apart. I can unify functions that only vary due to a value with
Parameterize Function (310). Some parameters, however, are really just a signal of
an entirely different behavior and are best excised with Remove Flag Argument
(314).

Data structures are often unpacked unnecessarily when passed between func-
tions; I prefer to keep them together with Preserve Whole Object (319). Decisions
on what should be passed as a parameter, and what can be resolved by the called
function, are ones I often need to revisit with Replace Parameter with Query (324)
and Replace Query with Parameter (327).

A class is a common form of module. I prefer my objects to be as immutable
as possible, so I use Remove Setting Method (331) whenever I can. Often, when a
caller asks for a new object, I need more flexibility than a simple constructor
gives, which I can get by using Replace Constructor with Factory Function (334).

The last two refactorings address the difficulty of breaking down a particularly
complex function that passes a lot of data around. I can turn that function into
an object with Replace Function with Command (337), which makes it easier to use
Extract Function (106) on the function’s body. If I later simplify the function and
no longer need it as a command object, I turn it back into a function with Replace
Command with Function (344).

305

Chapter 11

Refactoring APIs

ptg26261585

Separate Query from Modifier

function getTotalOutstandingAndSendBill() {
 const result = customer.invoices.reduce((total, each) => each.amount + total, 0);
 sendBill();
 return result;
}

function totalOutstanding() {
 return customer.invoices.reduce((total, each) => each.amount + total, 0);
}
function sendBill() {
 emailGateway.send(formatBill(customer));
}

Motivation

When I have a function that gives me a value and has no observable side effects,
I have a very valuable thing. I can call this function as often as I like. I can move
the call to other places in a calling function. It’s easier to test. In short, I have a
lot less to worry about.

It is a good idea to clearly signal the difference between functions with side
effects and those without. A good rule to follow is that any function that returns
a value should not have observable side effects—the command-query separation
[mf-cqs]. Some programmers treat this as an absolute rule. I’m not 100 percent
pure on this (as on anything), but I try to follow it most of the time, and it has
served me well.

If I come across a method that returns a value but also has side effects, I always
try to separate the query from the modifier.

Chapter 11 Refactoring APIs306

ptg26261585

Note that I use the phrase observable side effects. A common optimization is
to cache the value of a query in a field so that repeated calls go quicker. Although
this changes the state of the object with the cache, the change is not observable.
Any sequence of queries will always return the same results for each query.

Mechanics

Copy the function, name it as a query.

Look into the function to see what is returned. If the query is used to populate a
variable, the variable’s name should provide a good clue.

Remove any side effects from the new query function.

Run static checks.

Find each call of the original method. If that call uses the return value, replace
the original call with a call to the query and insert a call to the original
method below it. Test after each change.

Remove return values from original.

Test.

Often after doing this there will be duplication between the query and the
original method that can be tidied up.

Example

Here is a function that scans a list of names for a miscreant. If it finds one, it
returns the name of the bad guy and sets off the alarms. It only does this for the
first miscreant it finds (I guess one is enough).

 function alertForMiscreant (people) {
 for (const p of people) {
 if (p === "Don") {
 setOffAlarms();
 return "Don";
 }
 if (p === "John") {
 setOffAlarms();
 return "John";
 }
 }
 return "";
 }

307Separate Query from Modifier

ptg26261585

I begin by copying the function, naming it after the query aspect of the function.

 function findMiscreant (people) {
 for (const p of people) {
 if (p === "Don") {
 setOffAlarms();
 return "Don";
 }
 if (p === "John") {
 setOffAlarms();
 return "John";
 }
 }
 return "";
 }

I remove the side effects from this new query.

 function findMiscreant (people) {
 for (const p of people) {
 if (p === "Don") {

setOffAlarms();
 return "Don";
 }
 if (p === "John") {

setOffAlarms();
 return "John";
 }
 }
 return "";
 }

I now go to each caller and replace it with a call to the query, followed by a
call to the modifier. So

 const found = alertForMiscreant(people);

changes to

 const found = findMiscreant(people);
 alertForMiscreant(people);

I now remove the return values from the modifier.

Chapter 11 Refactoring APIs308

ptg26261585

 function alertForMiscreant (people) {
 for (const p of people) {
 if (p === "Don") {
 setOffAlarms();

return;
 }
 if (p === "John") {
 setOffAlarms();

return;
 }
 }

return;
 }

Now I have a lot of duplication between the original modifier and the new
query, so I can use Substitute Algorithm (195) so that the modifier uses the query.

 function alertForMiscreant (people) {
 if (findMiscreant(people) !== "") setOffAlarms();
 }

309Separate Query from Modifier

ptg26261585

Parameterize Function
formerly: Parameterize Method

function tenPercentRaise(aPerson) {
 aPerson.salary = aPerson.salary.multiply(1.1);
}
function fivePercentRaise(aPerson) {
 aPerson.salary = aPerson.salary.multiply(1.05);
}

function raise(aPerson, factor) {
 aPerson.salary = aPerson.salary.multiply(1 + factor);
}

Motivation

If I see two functions that carry out very similar logic with different literal values,
I can remove the duplication by using a single function with parameters for the
different values. This increases the usefulness of the function, since I can apply
it elsewhere with different values.

Mechanics

Select one of the similar methods.

Use Change Function Declaration (124) to add any literals that need to turn
into parameters.

For each caller of the function, add the literal value.

Test.

Change the body of the function to use the new parameters. Test after each
change.

For each similar function, replace the call with a call to the parameterized
function. Test after each one.

Chapter 11 Refactoring APIs310

ptg26261585

If the original parameterized function doesn’t work for a similar function, adjust
it for the new function before moving on to the next.

Example

An obvious example is something like this:

function tenPercentRaise(aPerson) {
 aPerson.salary = aPerson.salary.multiply(1.1);
}
function fivePercentRaise(aPerson) {
 aPerson.salary = aPerson.salary.multiply(1.05);
}

Hopefully it’s obvious that I can replace these with

function raise(aPerson, factor) {
 aPerson.salary = aPerson.salary.multiply(1 + factor);
}

But it can be a bit more involved than that. Consider this code:

function baseCharge(usage) {
 if (usage < 0) return usd(0);
 const amount =
 bottomBand(usage) * 0.03
 + middleBand(usage) * 0.05
 + topBand(usage) * 0.07;
 return usd(amount);
}

function bottomBand(usage) {
 return Math.min(usage, 100);
}

function middleBand(usage) {
 return usage > 100 ? Math.min(usage, 200) - 100 : 0;
}

function topBand(usage) {
 return usage > 200 ? usage - 200 : 0;
}

Here the logic is clearly pretty similar—but is it similar enough to support cre-
ating a parameterized method for the bands? It is, but may be a touch less obvious
than the trivial case above.

When looking to parameterize some related functions, my approach is to take
one of the functions and add parameters to it, with an eye to the other cases.
With range-oriented things like this, usually the place to start is with the middle
range. So I’ll work on middleBand to change it to use parameters, and then adjust
other callers to fit.

311Parameterize Function

ptg26261585

middleBand uses two literal values: 100 and 200. These represent the bottom and
top of this middle band. I begin by using Change Function Declaration (124) to add
them to the call. While I’m at it, I’ll also change the name of the function to
something that makes sense with the parameterization.

function withinBand(usage, bottom, top) {
 return usage > 100 ? Math.min(usage, 200) - 100 : 0;
}

function baseCharge(usage) {
 if (usage < 0) return usd(0);
 const amount =
 bottomBand(usage) * 0.03
 + withinBand(usage, 100, 200) * 0.05
 + topBand(usage) * 0.07;
 return usd(amount);
}

I replace each literal with a reference to the parameter:

function withinBand(usage, bottom, top) {
 return usage > bottom ? Math.min(usage, 200) - bottom : 0;
}

then:

function withinBand(usage, bottom, top) {
 return usage > bottom ? Math.min(usage, top) - bottom : 0;
}

I replace the call to the bottom band with a call to the newly parameterized
function.

function baseCharge(usage) {
 if (usage < 0) return usd(0);
 const amount =

withinBand(usage, 0, 100) * 0.03
 + withinBand(usage, 100, 200) * 0.05
 + topBand(usage) * 0.07;
 return usd(amount);
}

function bottomBand(usage) {
return Math.min(usage, 100);

}

To replace the call to the top band, I need to make use of infinity.

Chapter 11 Refactoring APIs312

ptg26261585

function baseCharge(usage) {
 if (usage < 0) return usd(0);
 const amount =
 withinBand(usage, 0, 100) * 0.03
 + withinBand(usage, 100, 200) * 0.05
 + withinBand(usage, 200, Infinity) * 0.07;
 return usd(amount);
}

function topBand(usage) {
return usage > 200 ? usage - 200 : 0;

}

With the logic working the way it does now, I could remove the initial guard
clause. But although it’s logically unnecessary now, I like to keep it as it documents
how to handle that case.

313Parameterize Function

ptg26261585

Remove Flag Argument
formerly: Replace Parameter with Explicit Methods

function setDimension(name, value) {
 if (name === "height") {
 this._height = value;
 return;
 }
 if (name === "width") {
 this._width = value;
 return;
 }
}

function setHeight(value) {this._height = value;}
function setWidth (value) {this._width = value;}

Motivation

A flag argument is a function argument that the caller uses to indicate which
logic the called function should execute. I may call a function that looks like this:

function bookConcert(aCustomer, isPremium) {
 if (isPremium) {
 // logic for premium booking
 } else {
 // logic for regular booking
 }
}

Chapter 11 Refactoring APIs314

ptg26261585

To book a premium concert, I issue the call like so:

bookConcert(aCustomer, true);

Flag arguments can also come as enums:

bookConcert(aCustomer, CustomerType.PREMIUM);

or strings (or symbols in languages that use them):

bookConcert(aCustomer, "premium");

I dislike flag arguments because they complicate the process of understanding
what function calls are available and how to call them. My first route into an API
is usually the list of available functions, and flag arguments hide the differences
in the function calls that are available. Once I select a function, I have to figure
out what values are available for the flag arguments. Boolean flags are even worse
since they don’t convey their meaning to the reader—in a function call, I can’t
figure out what true means. It’s clearer to provide an explicit function for the task
I want to do.

premiumBookConcert(aCustomer);

Not all arguments like this are flag arguments. To be a flag argument, the
callers must be setting the boolean value to a literal value, not data that’s flowing
through the program. Also, the implementation function must be using the argu-
ment to influence its control flow, not as data that it passes to further functions.

Removing flag arguments doesn’t just make the code clearer—it also helps my
tooling. Code analysis tools can now more easily see the difference between
calling the premium logic and calling regular logic.

Flag arguments can have a place if there’s more than one of them in the func-
tion, since otherwise I would need explicit functions for every combination of
their values. But that’s also a signal of a function doing too much, and I should
look for a way to create simpler functions that I can compose for this logic.

Mechanics

Create an explicit function for each value of the parameter.

If the main function has a clear dispatch conditional, use Decompose Conditional
(260) to create the explicit functions. Otherwise, create wrapping functions.

For each caller that uses a literal value for the parameter, replace it with a
call to the explicit function.

315Remove Flag Argument

ptg26261585

Example

Looking through some code, I see calls to calculate a delivery date for a shipment.
Some of the calls look like

aShipment.deliveryDate = deliveryDate(anOrder, true);

and some look like

aShipment.deliveryDate = deliveryDate(anOrder, false);

Faced with code like this, I immediately begin to wonder about the meaning
of the boolean value. What is it doing?

The body of deliveryDate looks like this:

function deliveryDate(anOrder, isRush) {
 if (isRush) {
 let deliveryTime;
 if (["MA", "CT"] .includes(anOrder.deliveryState)) deliveryTime = 1;
 else if (["NY", "NH"].includes(anOrder.deliveryState)) deliveryTime = 2;
 else deliveryTime = 3;
 return anOrder.placedOn.plusDays(1 + deliveryTime);
 }
 else {
 let deliveryTime;
 if (["MA", "CT", "NY"].includes(anOrder.deliveryState)) deliveryTime = 2;
 else if (["ME", "NH"] .includes(anOrder.deliveryState)) deliveryTime = 3;
 else deliveryTime = 4;
 return anOrder.placedOn.plusDays(2 + deliveryTime);
 }
}

Here, the caller is using a literal boolean value to determine which code should
run—a classic flag argument. But the whole point of using a function is to follow
the caller’s instructions, so it is better to clarify the caller’s intent with explicit
functions.

In this case, I can do this by using Decompose Conditional (260), which gives
me this:

function deliveryDate(anOrder, isRush) {
 if (isRush) return rushDeliveryDate(anOrder);
 else return regularDeliveryDate(anOrder);
}

Chapter 11 Refactoring APIs316

ptg26261585

function rushDeliveryDate(anOrder) {
 let deliveryTime;
 if (["MA", "CT"] .includes(anOrder.deliveryState)) deliveryTime = 1;
 else if (["NY", "NH"].includes(anOrder.deliveryState)) deliveryTime = 2;
 else deliveryTime = 3;
 return anOrder.placedOn.plusDays(1 + deliveryTime);
}
function regularDeliveryDate(anOrder) {
 let deliveryTime;
 if (["MA", "CT", "NY"].includes(anOrder.deliveryState)) deliveryTime = 2;
 else if (["ME", "NH"] .includes(anOrder.deliveryState)) deliveryTime = 3;
 else deliveryTime = 4;
 return anOrder.placedOn.plusDays(2 + deliveryTime);
}

The two new functions capture the intent of the call better, so I can replace
each call of

aShipment.deliveryDate = deliveryDate(anOrder, true);

with

aShipment.deliveryDate = rushDeliveryDate(anOrder);

and similarly with the other case.
When I’ve replaced all the callers, I remove deliveryDate.
A flag argument isn’t just the presence of a boolean value; it’s that the boolean

is set with a literal rather than data. If all the callers of deliveryDate were like this:

const isRush = determineIfRush(anOrder);
aShipment.deliveryDate = deliveryDate(anOrder, isRush);

then I’d have no problem with deliveryDate’s signature (although I’d still want to
apply Decompose Conditional (260)).

It may be that some callers use the argument as a flag argument by setting it
with a literal, while others set the argument with data. In this case, I’d still use
Remove Flag Argument, but not change the data callers and not remove deliveryDate
at the end. That way I support both interfaces for the different uses.

Decomposing the conditional like this is a good way to carry out this refactoring,
but it only works if the dispatch on the parameter is the outer part of the function
(or I can easily refactor it to make it so). It’s also possible that the parameter is
used in a much more tangled way, such as this alternative version of deliveryDate:

317Remove Flag Argument

ptg26261585

function deliveryDate(anOrder, isRush) {
 let result;
 let deliveryTime;
 if (anOrder.deliveryState === "MA" || anOrder.deliveryState === "CT")
 deliveryTime = isRush? 1 : 2;
 else if (anOrder.deliveryState === "NY" || anOrder.deliveryState === "NH") {
 deliveryTime = 2;
 if (anOrder.deliveryState === "NH" && !isRush)
 deliveryTime = 3;
 }
 else if (isRush)
 deliveryTime = 3;
 else if (anOrder.deliveryState === "ME")
 deliveryTime = 3;
 else
 deliveryTime = 4;
 result = anOrder.placedOn.plusDays(2 + deliveryTime);
 if (isRush) result = result.minusDays(1);
 return result;
}

In this case, teasing out isRush into a top-level dispatch conditional is likely more
work than I fancy. So instead, I can layer functions over the deliveryDate:

function rushDeliveryDate (anOrder) {return deliveryDate(anOrder, true);}
function regularDeliveryDate(anOrder) {return deliveryDate(anOrder, false);}

These wrapping functions are essentially partial applications of deliveryDate, although
they are defined in program text rather than by composition of functions.

I can then do the same replacement of callers that I did with the decomposed
conditional earlier on. If there aren’t any callers using the parameter as data, I
like to restrict its visibility or rename it to a name that conveys that it shouldn’t
be used directly (e.g., deliveryDateHelperOnly).

Chapter 11 Refactoring APIs318

ptg26261585

Preserve Whole Object

const low = aRoom.daysTempRange.low;
const high = aRoom.daysTempRange.high;
if (aPlan.withinRange(low, high))

if (aPlan.withinRange(aRoom.daysTempRange))

Motivation

If I see code that derives a couple of values from a record and then passes these
values into a function, I like to replace those values with the whole record itself,
letting the function body derive the values it needs.

Passing the whole record handles change better should the called function
need more data from the whole in the future—that change would not require me
to alter the parameter list. It also reduces the size of the parameter list, which
usually makes the function call easier to understand. If many functions are called
with the parts, they often duplicate the logic that manipulates these parts—logic
that can often be moved to the whole.

The main reason I wouldn’t do this is if I don’t want the called function to
have a dependency on the whole—which typically occurs when they are in
different modules.

Pulling several values from an object to do some logic on them alone is a smell
(Feature Envy (77)), and usually a signal that this logic should be moved into the
whole itself. Preserve Whole Object is particularly common after I’ve done
Introduce Parameter Object (140), as I hunt down any occurrences of the original
data clump to replace them with the new object.

If several bits of code only use the same subset of an object’s features, then
that may indicate a good opportunity for Extract Class (182).

One case that many people miss is when an object calls another object with
several of its own data values. If I see this, I can replace those values with a
self-reference (this in JavaScript).

319Preserve Whole Object

ptg26261585

Mechanics

Create an empty function with the desired parameters.

Give the function an easily searchable name so it can be replaced at the end.

Fill the body of the new function with a call to the old function, mapping
from the new parameters to the old ones.

Run static checks.

Adjust each caller to use the new function, testing after each change.

This may mean that some code that derives the parameter isn’t needed, so can
fall to Remove Dead Code (237).

Once all original callers have been changed, use Inline Function (115) on the
original function.

Change the name of the new function and all its callers.

Example

Consider a room monitoring system. It compares its daily temperature range with
a range in a predefined heating plan.

caller…
 const low = aRoom.daysTempRange.low;
 const high = aRoom.daysTempRange.high;
 if (!aPlan.withinRange(low, high))
 alerts.push("room temperature went outside range");

class HeatingPlan…
 withinRange(bottom, top) {
 return (bottom >= this._temperatureRange.low) && (top <= this._temperatureRange.high);
 }

Instead of unpacking the range information when I pass it in, I can pass in the
whole range object.

I begin by stating the interface I want as an empty function.

class HeatingPlan…
 xxNEWwithinRange(aNumberRange) {
 }

Since I intend it to replace the existing withinRange, I name it the same but with
an easily replaceable prefix.

I then add the body of the function, which relies on calling the existing
withinRange. The body thus consists of a mapping from the new parameter to the
existing ones.

Chapter 11 Refactoring APIs320

ptg26261585

class HeatingPlan…
 xxNEWwithinRange(aNumberRange) {
 return this.withinRange(aNumberRange.low, aNumberRange.high);
 }

Now I can begin the serious work, taking the existing function calls and having
them call the new function.

caller…
 const low = aRoom.daysTempRange.low;
 const high = aRoom.daysTempRange.high;
 if (!aPlan.xxNEWwithinRange(aRoom.daysTempRange))
 alerts.push("room temperature went outside range");

When I’ve changed the calls, I may see that some of the earlier code isn’t
needed anymore, so I wield Remove Dead Code (237).

caller…
const low = aRoom.daysTempRange.low;
const high = aRoom.daysTempRange.high;

 if (!aPlan.xxNEWwithinRange(aRoom.daysTempRange))
 alerts.push("room temperature went outside range");

I replace these one at a time, testing after each change.
Once I’ve replaced them all, I can use Inline Function (115) on the original

function.

class HeatingPlan…
 xxNEWwithinRange(aNumberRange) {
 return (aNumberRange.low >= this._temperatureRange.low) &&
 (aNumberRange.high <= this._temperatureRange.high);
 }

And I finally remove that ugly prefix from the new function and all its callers.
The prefix makes it a simple global replace, even if I don’t have a robust rename
support in my editor.

class HeatingPlan…
 withinRange(aNumberRange) {
 return (aNumberRange.low >= this._temperatureRange.low) &&
 (aNumberRange.high <= this._temperatureRange.high);
 }

caller…
 if (!aPlan.withinRange(aRoom.daysTempRange))
 alerts.push("room temperature went outside range");

321Preserve Whole Object

ptg26261585

Example: A Variation to Create the New Function

In the above example, I wrote the code for the new function directly. Most of
the time, that’s pretty simple and the easiest way to go. But there is a variation
on this that’s occasionally useful—which can allow me to compose the new
function entirely from refactorings.

I start with a caller of the existing function.

caller…
 const low = aRoom.daysTempRange.low;
 const high = aRoom.daysTempRange.high;
 if (!aPlan.withinRange(low, high))
 alerts.push("room temperature went outside range");

I want to rearrange the code so I can create the new function by using Extract
Function (106) on some existing code. The caller code isn’t quite there yet, but
I can get there by using Extract Variable (119) a few times. First, I disentangle the
call to the old function from the conditional.

caller…
 const low = aRoom.daysTempRange.low;
 const high = aRoom.daysTempRange.high;
 const isWithinRange = aPlan.withinRange(low, high);
 if (!isWithinRange)
 alerts.push("room temperature went outside range");

I then extract the input parameter.

caller…
 const tempRange = aRoom.daysTempRange;
 const low = tempRange.low;
 const high = tempRange.high;
 const isWithinRange = aPlan.withinRange(low, high);
 if (!isWithinRange)
 alerts.push("room temperature went outside range");

With that done, I can now use Extract Function (106) to create the new function.

caller…
 const tempRange = aRoom.daysTempRange;
 const isWithinRange = xxNEWwithinRange(aPlan, tempRange);
 if (!isWithinRange)
 alerts.push("room temperature went outside range");

Chapter 11 Refactoring APIs322

ptg26261585

top level…
 function xxNEWwithinRange(aPlan, tempRange) {
 const low = tempRange.low;
 const high = tempRange.high;
 const isWithinRange = aPlan.withinRange(low, high);
 return isWithinRange;
 }

Since the original function is in a different context (the HeatingPlan class), I need
to use Move Function (198).

caller…
 const tempRange = aRoom.daysTempRange;
 const isWithinRange = aPlan.xxNEWwithinRange(tempRange);
 if (!isWithinRange)
 alerts.push("room temperature went outside range");

class HeatingPlan…
 xxNEWwithinRange(tempRange) {
 const low = tempRange.low;
 const high = tempRange.high;
 const isWithinRange = this.withinRange(low, high);
 return isWithinRange;
 }

I then continue as before, replacing other callers and inlining the old function
into the new one. I would also inline the variables I extracted to provide the
clean separation for extracting the new function.

Because this variation is entirely composed of refactorings, it’s particularly
handy when I have a refactoring tool with robust extract and inline operations.

323Preserve Whole Object

ptg26261585

Replace Parameter with Query
formerly: Replace Parameter with Method
inverse of: Replace Query with Parameter (327)

availableVacation(anEmployee, anEmployee.grade);

function availableVacation(anEmployee, grade) {
 // calculate vacation...

availableVacation(anEmployee)

function availableVacation(anEmployee) {
 const grade = anEmployee.grade;
 // calculate vacation...

Motivation

The parameter list to a function should summarize the points of variability of
that function, indicating the primary ways in which that function may behave
differently. As with any statement in code, it’s good to avoid any duplication,
and it’s easier to understand if the parameter list is short.

If a call passes in a value that the function can just as easily determine for itself,
that’s a form of duplication—one that unnecessarily complicates the caller which
has to determine the value of a parameter when it could be freed from that work.

The limit on this is suggested by the phrase “just as easily.” By removing the
parameter, I’m shifting the responsibility for determining the parameter value.
When the parameter is present, determining its value is the caller’s responsibility;
otherwise, that responsibility shifts to the function body. My usual habit is to
simplify life for callers, which implies moving responsibility to the function
body—but only if that responsibility is appropriate there.

The most common reason to avoid Replace Parameter with Query is if removing
the parameter adds an unwanted dependency to the function body—forcing it to
access a program element that I’d rather it remained ignorant of. This may be a

Chapter 11 Refactoring APIs324

ptg26261585

new dependency, or an existing one that I’d like to remove. Usually this comes
up where I’d need to add a problematic function call to the function body, or
access something within a receiver object that I’d prefer to move out later.

The safest case for Replace Parameter with Query is when the value of the
parameter I want to remove is determined merely by querying another parameter
in the list. There’s rarely any point in passing two parameters if one can be
determined from the other.

One thing to watch out for is if the function I’m looking at has referential
transparency—that is, if I can be sure that it will behave the same way whenever
it’s called with the same parameter values. Such functions are much easier to
reason about and test, and I don’t want to alter them to lose that property. So I
wouldn’t replace a parameter with an access to a mutable global variable.

Mechanics

If necessary, use Extract Function (106) on the calculation of the parameter.

Replace references to the parameter in the function body with references to
the expression that yields the parameter. Test after each change.

Use Change Function Declaration (124) to remove the parameter.

Example

I most often use Replace Parameter with Query when I’ve done some other
refactorings that make a parameter no longer needed. Consider this code.

class Order…
 get finalPrice() {
 const basePrice = this.quantity * this.itemPrice;
 let discountLevel;
 if (this.quantity > 100) discountLevel = 2;
 else discountLevel = 1;
 return this.discountedPrice(basePrice, discountLevel);
 }

 discountedPrice(basePrice, discountLevel) {
 switch (discountLevel) {
 case 1: return basePrice * 0.95;
 case 2: return basePrice * 0.9;
 }
 }

When I’m simplifying a function, I’m keen to apply Replace Temp with Query
(178), which would lead me to

325Replace Parameter with Query

ptg26261585

class Order…
 get finalPrice() {
 const basePrice = this.quantity * this.itemPrice;
 return this.discountedPrice(basePrice, this.discountLevel);
 }

 get discountLevel() {
 return (this.quantity > 100) ? 2 : 1;
 }

Once I’ve done this, there’s no need to pass the result of discountLevel to
discountedPrice—it can just as easily make the call itself.

I replace any reference to the parameter with a call to the method instead.

class Order…
 discountedPrice(basePrice, discountLevel) {
 switch (this.discountLevel) {
 case 1: return basePrice * 0.95;
 case 2: return basePrice * 0.9;
 }
 }

I can then use Change Function Declaration (124) to remove the parameter.

class Order…
 get finalPrice() {
 const basePrice = this.quantity * this.itemPrice;
 return this.discountedPrice(basePrice, this.discountLevel);
 }

 discountedPrice(basePrice, discountLevel) {
 switch (this.discountLevel) {
 case 1: return basePrice * 0.95;
 case 2: return basePrice * 0.9;
 }
 }

Chapter 11 Refactoring APIs326

ptg26261585

Replace Query with Parameter
inverse of: Replace Parameter with Query (324)

targetTemperature(aPlan)

function targetTemperature(aPlan) {
 currentTemperature = thermostat.currentTemperature;
 // rest of function...

targetTemperature(aPlan, thermostat.currentTemperature)

function targetTemperature(aPlan, currentTemperature) {
 // rest of function...

Motivation

When looking through a function’s body, I sometimes see references to something
in the function’s scope that I’m not happy with. This might be a reference to a
global variable, or to an element in the same module that I intend to move away.
To resolve this, I need to replace the internal reference with a parameter, shifting
the responsibility of resolving the reference to the caller of the function.

Most of these cases are due to my wish to alter the dependency relationships
in the code—to make the target function no longer dependent on the element I
want to parameterize. There’s a tension here between converting everything to
parameters, which results in long repetitive parameter lists, and sharing a lot of
scope which can lead to a lot of coupling between functions. Like most tricky
decisions, it’s not something I can reliably get right, so it’s important that I can
reliably change things so the program can take advantage of my increasing
understanding.

It’s easier to reason about a function that will always give the same result when
called with same parameter values—this is called referential transparency. If a
function accesses some element in its scope that isn’t referentially transparent,
then the containing function also lacks referential transparency. I can fix that by

327Replace Query with Parameter

ptg26261585

moving that element to a parameter. Although such a move will shift responsibil-
ity to the caller, there is often a lot to be gained by creating clear modules with
referential transparency. A common pattern is to have modules consisting of pure
functions which are wrapped by logic that handles the I/O and other variable
elements of a program. I can use Replace Query with Parameter to purify parts
of a program, making those parts easier to test and reason about.

But Replace Query with Parameter isn’t just a bag of benefits. By moving a
query to a parameter, I force my caller to figure out how to provide this value.
This complicates life for callers of the functions, and my usual bias is to design
interfaces that make life easier for their consumers. In the end, it boils down to
allocation of responsibility around the program, and that’s a decision that’s neither
easy nor immutable—which is why this refactoring (and its inverse) is one that
I need to be very familiar with.

Mechanics

Use Extract Variable (119) on the query code to separate it from the rest of
the function body.

Apply Extract Function (106) to the body code that isn’t the call to the query.

Give the new function an easily searchable name, for later renaming.

Use Inline Variable (123) to get rid of the variable you just created.

Apply Inline Function (115) to the original function.

Rename the new function to that of the original.

Example

Consider a simple, yet annoying, control system for temperature. It allows the
user to select a temperature on a thermostat—but only sets the target temperature
within a range determined by a heating plan.

class HeatingPlan…
 get targetTemperature() {
 if (thermostat.selectedTemperature > this._max) return this._max;
 else if (thermostat.selectedTemperature < this._min) return this._min;
 else return thermostat.selectedTemperature;
 }

caller…
 if (thePlan.targetTemperature > thermostat.currentTemperature) setToHeat();
 else if (thePlan.targetTemperature < thermostat.currentTemperature) setToCool();
 else setOff();

Chapter 11 Refactoring APIs328

ptg26261585

As a user of such a system, I might be annoyed to have my desires overridden
by the heating plan rules, but as a programmer I might be more concerned about
how the targetTemperature function has a dependency on a global thermostat object.
I can break this dependency by moving it to a parameter.

My first step is to use Extract Variable (119) on the parameter that I want to
have in my function.

class HeatingPlan…
 get targetTemperature() {

const selectedTemperature = thermostat.selectedTemperature;
 if (selectedTemperature > this._max) return this._max;
 else if (selectedTemperature < this._min) return this._min;
 else return selectedTemperature;
 }

That makes it easy to apply Extract Function (106) on the entire body of the
function except for the bit that figures out the parameter.

class HeatingPlan…
 get targetTemperature() {
 const selectedTemperature = thermostat.selectedTemperature;
 return this.xxNEWtargetTemperature(selectedTemperature);
 }

xxNEWtargetTemperature(selectedTemperature) {
 if (selectedTemperature > this._max) return this._max;
 else if (selectedTemperature < this._min) return this._min;
 else return selectedTemperature;
 }

I then inline the variable I just extracted, which leaves the function as a
simple call.

class HeatingPlan…
 get targetTemperature() {
 return this.xxNEWtargetTemperature(thermostat.selectedTemperature);
 }

I can now use Inline Function (115) on this method.

caller…
 if (thePlan.xxNEWtargetTemperature(thermostat.selectedTemperature) >
 thermostat.currentTemperature)
 setToHeat();
 else if (thePlan.xxNEWtargetTemperature(thermostat.selectedTemperature) <
 thermostat.currentTemperature)
 setToCool();
 else
 setOff();

329Replace Query with Parameter

ptg26261585

I take advantage of the easily searchable name of the new function to rename
it by removing the prefix.

caller…
 if (thePlan.targetTemperature(thermostat.selectedTemperature) >
 thermostat.currentTemperature)
 setToHeat();
 else if (thePlan.targetTemperature(thermostat.selectedTemperature) <
 thermostat.currentTemperature)
 setToCool();
 else
 setOff();

class HeatingPlan…
targetTemperature(selectedTemperature) {

 if (selectedTemperature > this._max) return this._max;
 else if (selectedTemperature < this._min) return this._min;
 else return selectedTemperature;
 }

As is often the case with this refactoring, the calling code looks more unwieldy
than before. Moving a dependency out of a module pushes the responsibility of
dealing with that dependency back to the caller. That’s the trade-off for the
reduced coupling.

But removing the coupling to the thermostat object isn’t the only gain I’ve
made with this refactoring. The HeatingPlan class is immutable—its fields are set in
the constructor with no methods to alter them. (I’ll save you the effort of looking
at the whole class; just trust me on this.) Given an immutable heating plan, by
moving the thermostat reference out of the function body I’ve also made
targetTemperature referentially transparent. Every time I call targetTemperature on the
same object, with the same argument, I will get the same result. If all the methods
of the heating plan have referential transparency, that makes this class much
easier to test and reason about.

A problem with JavaScript’s class model is that it’s impossible to enforce an
immutable class—there’s always a way to get at an object’s data. But writing a
class to signal and encourage immutability is often good enough. Creating classes
that have this characteristic is often a sound strategy and Replace Query with
Parameter is a handy tool for doing this.

Chapter 11 Refactoring APIs330

ptg26261585

Remove Setting Method

class Person {
 get name() {...}
 set name(aString) {...}

class Person {
 get name() {...}

Motivation

Providing a setting method indicates that a field may be changed. If I don’t want
that field to change once the object is created, I don’t provide a setting method
(and make the field immutable). That way, the field is set only in the constructor,
my intention to have it not change is clear, and I usually remove the very
possibility that the field will change.

There’s a couple of common cases where this comes up. One is where people
always use accessor methods to manipulate a field, even within constructors.
This leads to the only call to a setting method being from the constructor. I prefer
to remove the setting method to make it clear that updates make no sense after
construction.

Another case is where the object is created by clients using creation script
rather than by a simple constructor call. Such a creation script starts with the
constructor call followed by a sequence of setter method calls to create the new
object. Once the script is finished, we don’t expect the new object to change
some (or even all) of its fields. The setters are only expected to be called during
this initial creation. In this case, I’d get rid of them to make my intentions clearer.

331Remove Setting Method

ptg26261585

Mechanics

If the value that’s being set isn’t provided to the constructor, use Change
Function Declaration (124) to add it. Add a call to the setting method within
the constructor.

If you wish to remove several setting methods, add all their values to the
constructor at once. This simplifies the later steps.

Remove each call of a setting method outside of the constructor, using the
new constructor value instead. Test after each one.

If you can’t replace the call to the setter by creating a new object (because you
are updating a shared reference object), abandon the refactoring.

Use Inline Function (115) on the setting method. Make the field immutable
if possible.

Test.

Example

I have a simple person class.

class Person…
 get name() {return this._name;}
 set name(arg) {this._name = arg;}
 get id() {return this._id;}
 set id(arg) {this._id = arg;}

At the moment, I create a new object with code like this:

 const martin = new Person();
 martin.name = "martin";
 martin.id = "1234";

The name of a person may change after it’s created, but the ID does not. To
make this clear, I want to remove the setting method for ID.

I still need to set the ID initially, so I’ll use Change Function Declaration (124)
to add it to the constructor.

class Person…
 constructor(id) {
 this.id = id;
 }

I then adjust the creation script to set the ID via the constructor.

Chapter 11 Refactoring APIs332

ptg26261585

 const martin = new Person("1234");
 martin.name = "martin";
martin.id = "1234";

I do this in each place I create a person, testing after each change.
When they are all done, I can apply Inline Function (115) to the setting method.

class Person…
 constructor(id) {

this._id = id;
 }
 get name() {return this._name;}
 set name(arg) {this._name = arg;}
 get id() {return this._id;}
set id(arg) {this._id = arg;}

333Remove Setting Method

ptg26261585

Replace Constructor with Factory Function
formerly: Replace Constructor with Factory Method

leadEngineer = new Employee(document.leadEngineer, 'E');

leadEngineer = createEngineer(document.leadEngineer);

Motivation

Many object-oriented languages have a special constructor function that’s called
to initialize an object. Clients typically call this constructor when they want to
create a new object. But these constructors often come with awkward limitations
that aren’t there for more general functions. A Java constructor must return an
instance of the class it was called with, which means I can’t replace it with a
subclass or proxy depending on the environment or parameters. Constructor
naming is fixed, which makes it impossible for me to use a name that is clearer
than the default. Constructors often require a special operator to invoke (“new”
in many languages) which makes them difficult to use in contexts that expect
normal functions.

A factory function suffers from no such limitations. It will likely call the con-
structor as part of its implementation, but I can freely substitute something else.

Mechanics

Create a factory function, its body being a call to the constructor.

Replace each call to the constructor with a call to the factory function.

Test after each change.

Limit the constructor’s visibility as much as possible.

Chapter 11 Refactoring APIs334

ptg26261585

Example

A quick but wearisome example uses kinds of employees. Consider an employee
class:

class Employee…
 constructor (name, typeCode) {
 this._name = name;
 this._typeCode = typeCode;
 }
 get name() {return this._name;}
 get type() {
 return Employee.legalTypeCodes[this._typeCode];
 }
 static get legalTypeCodes() {
 return {"E": "Engineer", "M": "Manager", "S": "Salesman"};
 }

This is used from

caller…
 candidate = new Employee(document.name, document.empType);

and

caller…
 const leadEngineer = new Employee(document.leadEngineer, 'E');

My first step is to create the factory function. Its body is a simple delegation
to the constructor.

top level…
 function createEmployee(name, typeCode) {
 return new Employee(name, typeCode);
 }

I then find the callers of the constructor and change them, one at a time, to
use the factory function instead.

The first one is obvious:

caller…
 candidate = createEmployee(document.name, document.empType);

With the second case, I could use the new factory function like this:

caller…
 const leadEngineer = createEmployee(document.leadEngineer, 'E');

335Replace Constructor with Factory Function

ptg26261585

But I don’t like using the type code here—it’s generally a bad smell to pass a
code as a literal string. So I prefer to create a new factory function that embeds
the kind of employee I want into its name.

caller…
 const leadEngineer = createEngineer(document.leadEngineer);

top level…
 function createEngineer(name) {
 return new Employee(name, 'E');
 }

Chapter 11 Refactoring APIs336

ptg26261585

Replace Function with Command
formerly: Replace Method with Method Object
inverse of: Replace Command with Function (344)

function score(candidate, medicalExam, scoringGuide) {
 let result = 0;
 let healthLevel = 0;
 // long body code
}

class Scorer {
 constructor(candidate, medicalExam, scoringGuide) {
 this._candidate = candidate;
 this._medicalExam = medicalExam;
 this._scoringGuide = scoringGuide;
 }

 execute() {
 this._result = 0;
 this._healthLevel = 0;
 // long body code
 }
}

Motivation

Functions—either freestanding or attached to objects as methods—are one of the
fundamental building blocks of programming. But there are times when it’s useful
to encapsulate a function into its own object, which I refer to as a “command
object” or simply a command. Such an object is mostly built around a single
method, whose request and execution is the purpose of the object.

A command offers a greater flexibility for the control and expression of a
function than the plain function mechanism. Commands can have complimentary
operations, such as undo. I can provide methods to build up their parameters to

337Replace Function with Command

ptg26261585

support a richer lifecycle. I can build in customizations using inheritance and
hooks. If I’m working in a language with objects but without first-class functions,
I can provide much of that capability by using commands instead. Similarly, I
can use methods and fields to help break down a complex function, even in a
language that lacks nested functions, and I can call those methods directly while
testing and debugging.

All these are good reasons to use commands, and I need to be ready to refactor
functions into commands when I need to. But we must not forget that this flexi-
bility, as ever, comes at a price paid in complexity. So, given the choice between
a first-class function and a command, I’ll pick the function 95% of the time. I
only use a command when I specifically need a facility that simpler approaches
can’t provide.

Like many words in software development, “command” is rather overloaded. In the
context I’m using it here, it is an object that encapsulates a request, following
the command pattern in Design Patterns [gof]. When I use “command” in this sense, I
use “command object” to set the context, and “command” afterwards. The word “com-
mand” is also used in the command-query separation principle [mf-cqs], where a com-
mand is an object method that changes observable state. I’ve always tried to avoid using
command in that sense, preferring “modifier” or “mutator.”

Mechanics

Create an empty class for the function. Name it based on the function.

Use Move Function (198) to move the function to the empty class.

Keep the original function as a forwarding function until at least the end of the
refactoring.

Follow any convention the language has for naming commands. If there is no
convention, choose a generic name for the command’s execute function, such as
“execute” or “call”.

Consider making a field for each argument, and move these arguments to
the constructor.

Example

The JavaScript language has many faults, but one of its great decisions was to
make functions first-class entities. I thus don’t have to go through all the hoops
of creating commands for common tasks that I need to do in languages without
this facility. But there are still times when a command is the right tool for the job.

One of these cases is breaking up a complex function so I can better understand
and modify it. To really show the value of this refactoring, I need a long and

Chapter 11 Refactoring APIs338

ptg26261585

complicated function—but that would take too long to write, let alone for you to
read. Instead, I’ll go with a function that’s short enough not to need it. This one
scores points for an insurance application:

 function score(candidate, medicalExam, scoringGuide) {
 let result = 0;
 let healthLevel = 0;
 let highMedicalRiskFlag = false;

 if (medicalExam.isSmoker) {
 healthLevel += 10;
 highMedicalRiskFlag = true;
 }
 let certificationGrade = "regular";
 if (scoringGuide.stateWithLowCertification(candidate.originState)) {
 certificationGrade = "low";
 result -= 5;
 }
 // lots more code like this
 result -= Math.max(healthLevel - 5, 0);
 return result;
 }

I begin by creating an empty class and then Move Function (198) to move the
function into it.

 function score(candidate, medicalExam, scoringGuide) {
 return new Scorer().execute(candidate, medicalExam, scoringGuide);
 }

 class Scorer {
execute (candidate, medicalExam, scoringGuide) {

 let result = 0;
 let healthLevel = 0;
 let highMedicalRiskFlag = false;

 if (medicalExam.isSmoker) {
 healthLevel += 10;
 highMedicalRiskFlag = true;
 }
 let certificationGrade = "regular";
 if (scoringGuide.stateWithLowCertification(candidate.originState)) {
 certificationGrade = "low";
 result -= 5;
 }
 // lots more code like this
 result -= Math.max(healthLevel - 5, 0);
 return result;
 }
 }

339Replace Function with Command

ptg26261585

Most of the time, I prefer to pass arguments to a command on the constructor
and have the execute method take no parameters. While this matters less for a
simple decomposition scenario like this, it’s very handy when I want to manipulate
the command with a more complicated parameter setting lifecycle or customiza-
tions. Different command classes can have different parameters but be mixed
together when queued for execution.

I can do these parameters one at a time.

 function score(candidate, medicalExam, scoringGuide) {
 return new Scorer(candidate).execute(candidate, medicalExam, scoringGuide);
 }

class Scorer…
 constructor(candidate){

this._candidate = candidate;
 }

 execute (candidate, medicalExam, scoringGuide) {
 let result = 0;
 let healthLevel = 0;
 let highMedicalRiskFlag = false;

 if (medicalExam.isSmoker) {
 healthLevel += 10;
 highMedicalRiskFlag = true;
 }
 let certificationGrade = "regular";
 if (scoringGuide.stateWithLowCertification(this._candidate.originState)) {
 certificationGrade = "low";
 result -= 5;
 }
 // lots more code like this
 result -= Math.max(healthLevel - 5, 0);
 return result;
 }

I continue with the other parameters

 function score(candidate, medicalExam, scoringGuide) {
 return new Scorer(candidate, medicalExam, scoringGuide).execute();
 }

class Scorer…
 constructor(candidate, medicalExam, scoringGuide){
 this._candidate = candidate;

this._medicalExam = medicalExam;
this._scoringGuide = scoringGuide;

 }

Chapter 11 Refactoring APIs340

ptg26261585

 execute () {
 let result = 0;
 let healthLevel = 0;
 let highMedicalRiskFlag = false;

 if (this._medicalExam.isSmoker) {
 healthLevel += 10;
 highMedicalRiskFlag = true;
 }
 let certificationGrade = "regular";
 if (this._scoringGuide.stateWithLowCertification(this._candidate.originState)) {
 certificationGrade = "low";
 result -= 5;
 }
 // lots more code like this
 result -= Math.max(healthLevel - 5, 0);
 return result;
 }

That completes Replace Function with Command, but the whole point of doing
this refactoring is to allow me to break down the complicated functions—so let
me outline some steps to achieve that. My next move here is to change all the
local variables into fields. Again, I do these one at a time.

class Scorer…
 constructor(candidate, medicalExam, scoringGuide){
 this._candidate = candidate;
 this._medicalExam = medicalExam;
 this._scoringGuide = scoringGuide;
 }

 execute () {
this._result = 0;

 let healthLevel = 0;
 let highMedicalRiskFlag = false;

 if (this._medicalExam.isSmoker) {
 healthLevel += 10;
 highMedicalRiskFlag = true;
 }
 let certificationGrade = "regular";
 if (this._scoringGuide.stateWithLowCertification(this._candidate.originState)) {
 certificationGrade = "low";

this._result -= 5;
 }
 // lots more code like this

this._result -= Math.max(healthLevel - 5, 0);
 return this._result;
 }

341Replace Function with Command

ptg26261585

I repeat this for all the local variables. (This is one of those refactorings that I
felt was sufficiently simple that I haven’t given it an entry in the catalog. I feel
slightly guilty about this.)

class Scorer…
 constructor(candidate, medicalExam, scoringGuide){
 this._candidate = candidate;
 this._medicalExam = medicalExam;
 this._scoringGuide = scoringGuide;
 }

 execute () {
 this._result = 0;

this._healthLevel = 0;
this._highMedicalRiskFlag = false;

 if (this._medicalExam.isSmoker) {
this._healthLevel += 10;
this._highMedicalRiskFlag = true;

 }
this._certificationGrade = "regular";

 if (this._scoringGuide.stateWithLowCertification(this._candidate.originState)) {
this._certificationGrade = "low";

 this._result -= 5;
 }
 // lots more code like this
 this._result -= Math.max(this._healthLevel - 5, 0);
 return this._result;
 }

Now I’ve moved all the function’s state to the command object, I can use
refactorings like Extract Function (106) without getting tangled up in all the
variables and their scopes.

class Scorer…
 execute () {
 this._result = 0;
 this._healthLevel = 0;
 this._highMedicalRiskFlag = false;

 this.scoreSmoking();
 this._certificationGrade = "regular";
 if (this._scoringGuide.stateWithLowCertification(this._candidate.originState)) {
 this._certificationGrade = "low";
 this._result -= 5;
 }
 // lots more code like this
 this._result -= Math.max(this._healthLevel - 5, 0);
 return this._result;
 }

Chapter 11 Refactoring APIs342

ptg26261585

scoreSmoking() {
 if (this._medicalExam.isSmoker) {
 this._healthLevel += 10;
 this._highMedicalRiskFlag = true;
 }
 }

This allows me to treat the command similarly to how I’d deal with a nested
function. Indeed, when doing this refactoring in JavaScript, using nested functions
would be a reasonable alternative to using a command. I’d still use a command
for this, partly because I’m more familiar with commands and partly because with
a command I can write tests and debugging calls against the subfunctions.

343Replace Function with Command

ptg26261585

Replace Command with Function
inverse of: Replace Function with Command (337)

class ChargeCalculator {
 constructor (customer, usage){
 this._customer = customer;
 this._usage = usage;
 }
 execute() {
 return this._customer.rate * this._usage;
 }
}

function charge(customer, usage) {
 return customer.rate * usage;
}

Motivation

Command objects provide a powerful mechanism for handling complex compu-
tations. They can easily be broken down into separate methods sharing common
state through the fields; they can be invoked via different methods for different
effects; they can have their data built up in stages. But that power comes at a
cost. Most of the time, I just want to invoke a function and have it do its thing.
If that’s the case, and the function isn’t too complex, then a command object is
more trouble than its worth and should be turned into a regular function.

Mechanics

Apply Extract Function (106) to the creation of the command and the call to
the command’s execution method.

This creates the new function that will replace the command in due course.

Chapter 11 Refactoring APIs344

ptg26261585

For each method called by the command’s execution method, apply Inline
Function (115).

If the supporting function returns a value, use Extract Variable (119) on the call
first and then Inline Function (115).

Use Change Function Declaration (124) to put all the parameters of the
constructor into the command’s execution method instead.

For each field, alter the references in the command’s execution method to
use the parameter instead. Test after each change.

Inline the constructor call and command’s execution method call into the
caller (which is the replacement function).

Test.

Apply Remove Dead Code (237) to the command class.

Example

I’ll begin with this small command object:

class ChargeCalculator {
 constructor (customer, usage, provider){
 this._customer = customer;
 this._usage = usage;
 this._provider = provider;
 }
 get baseCharge() {
 return this._customer.baseRate * this._usage;
 }
 get charge() {
 return this.baseCharge + this._provider.connectionCharge;
 }
}

It is used by code like this:

caller…
 monthCharge = new ChargeCalculator(customer, usage, provider).charge;

The command class is small and simple enough to be better off as a function.
I begin by using Extract Function (106) to wrap the class creation and invocation.

caller…
 monthCharge = charge(customer, usage, provider);

345Replace Command with Function

ptg26261585

top level…
 function charge(customer, usage, provider) {
 return new ChargeCalculator(customer, usage, provider).charge;
 }

I have to decide how to deal with any supporting functions, in this case baseCharge.
My usual approach for a function that returns a value is to first Extract Variable
(119) on that value.

class ChargeCalculator…
 get baseCharge() {
 return this._customer.baseRate * this._usage;
 }
 get charge() {
 const baseCharge = this.baseCharge;
 return baseCharge + this._provider.connectionCharge;
 }

Then, I use Inline Function (115) on the supporting function.

class ChargeCalculator…
 get charge() {
 const baseCharge = this._customer.baseRate * this._usage;
 return baseCharge + this._provider.connectionCharge;
 }

I now have all the processing in a single function, so my next step is to move
the data passed to the constructor to the main method. I first use Change Function
Declaration (124) to add all the constructor parameters to the charge method.

class ChargeCalculator…
 constructor (customer, usage, provider){
 this._customer = customer;
 this._usage = usage;
 this._provider = provider;
 }

 charge(customer, usage, provider) {
 const baseCharge = this._customer.baseRate * this._usage;
 return baseCharge + this._provider.connectionCharge;
 }

top level…
 function charge(customer, usage, provider) {
 return new ChargeCalculator(customer, usage, provider)
 .charge(customer, usage, provider);
 }

Now I can alter the body of charge to use the passed parameters instead. I can
do this one at a time.

Chapter 11 Refactoring APIs346

ptg26261585

class ChargeCalculator…
 constructor (customer, usage, provider){

this._customer = customer;
 this._usage = usage;
 this._provider = provider;
 }

 charge(customer, usage, provider) {
 const baseCharge = customer.baseRate * this._usage;
 return baseCharge + this._provider.connectionCharge;
 }

I don’t have to remove the assignment to this._customer in the constructor, as it
will just be ignored. But I prefer to do it since that will make a test fail if I miss
changing a use of field to the parameter. (And if a test doesn’t fail, I should
consider adding a new test.)

I repeat this for the other parameters, ending up with

class ChargeCalculator…
 charge(customer, usage, provider) {
 const baseCharge = customer.baseRate * usage;
 return baseCharge + provider.connectionCharge;
 }

Once I’ve done all of these, I can inline into the top-level charge function. This
is a special kind of Inline Function (115), as it’s inlining both the constructor and
method call together.

top level…
 function charge(customer, usage, provider) {
 const baseCharge = customer.baseRate * usage;
 return baseCharge + provider.connectionCharge;
 }

The command class is now dead code, so I’ll use Remove Dead Code (237) to
give it an honorable burial.

347Replace Command with Function

ptg26261585

This page intentionally left blank

ptg26261585

In this final chapter, I’ll turn to one of the best known features of object-oriented
programming: inheritance. Like any powerful mechanism, it is both very useful
and easy to misuse, and it’s often hard to see the misuse until it’s in the rear-view
mirror.

Often, features need to move up or down the inheritance hierarchy. Several
refactorings deal with that: Pull Up Method (350), Pull Up Field (353), Pull Up
Constructor Body (355), Push Down Method (359), and Push Down Field (361). I can
add and remove classes from the hierarchy with Extract Superclass (375), Remove
Subclass (369), and Collapse Hierarchy (380). I may want to add a subclass to replace
a field that I’m using to trigger different behavior based on its value; I do this
with Replace Type Code with Subclasses (362).

Inheritance is a powerful tool, but sometimes it gets used in the wrong place—or
the place it’s used in becomes wrong. In that case, I use Replace Subclass with
Delegate (381) or Replace Superclass with Delegate (399) to turn inheritance into
delegation.

349

Chapter 12

Dealing with Inheritance

ptg26261585

Pull Up Method
inverse of: Push Down Method (359)

class Employee {...}

class Salesman extends Employee {
 get name() {...}
}

class Engineer extends Employee {
 get name() {...}
}

class Employee {
 get name() {...}
}

class Salesman extends Employee {...}
class Engineer extends Employee {...}

Motivation

Eliminating duplicate code is important. Two duplicate methods may work fine
as they are, but they are nothing but a breeding ground for bugs in the future.
Whenever there is duplication, there is risk that an alteration to one copy will
not be made to the other. Usually, it is difficult to find the duplicates.

The easiest case of using Pull Up Method is when the methods have the same
body, implying there’s been a copy and paste. Of course it’s not always as obvious
as that. I could just do the refactoring and see if the tests croak—but that puts a
lot of reliance on my tests. I usually find it valuable to look for the differences—
often, they show up behavior that I forgot to test for.

Chapter 12 Dealing with Inheritance350

ptg26261585

Often, Pull Up Method comes after other steps. I see two methods in different
classes that can be parameterized in such a way that they end up as essentially
the same method. In that case, the smallest step is for me to apply Parameterize
Function (310) separately and then Pull Up Method.

The most awkward complication with Pull Up Method is if the body of the
method refers to features that are on the subclass but not on the superclass.
When that happens, I need to use Pull Up Field (353) and Pull Up Method on
those elements first.

If I have two methods with a similar overall flow, but differing in details, I’ll
consider the Form Template Method [mf-ft].

Mechanics

Inspect methods to ensure they are identical.

If they do the same thing, but are not identical, refactor them until they have
identical bodies.

Check that all method calls and field references inside the method body refer
to features that can be called from the superclass.

If the methods have different signatures, use Change Function Declaration (124)
to get them to the one you want to use on the superclass.

Create a new method in the superclass. Copy the body of one of the methods
over to it.

Run static checks.

Delete one subclass method.

Test.

Keep deleting subclass methods until they are all gone.

Example

I have two subclass methods that do the same thing.

class Employee extends Party…
 get annualCost() {
 return this.monthlyCost * 12;
 }

class Department extends Party…
 get totalAnnualCost() {
 return this.monthlyCost * 12;
 }

351Pull Up Method

ptg26261585

I look at both classes and see that they refer to the monthlyCost property which
isn’t defined on the superclass, but is present in both subclasses. Since I’m in a
dynamic language, I’m OK; if I were in a static language, I’d need to define an
abstract method on Party.

The methods have different names, so I Change Function Declaration (124) to
make them the same.

class Department…
 get annualCost() {
 return this.monthlyCost * 12;
 }

I copy the method from one subclass and paste it into the superclass.

class Party…
 get annualCost() {
 return this.monthlyCost * 12;
 }

In a static language, I’d compile to ensure that all the references were OK. That
won’t help me here, so I first remove annualCost from Employee, test, and then remove
it from Department.

That completes the refactoring, but does leave a question. annualCost calls
monthlyCost, but monthlyCost doesn’t appear in the Party class. It all works, because
JavaScript is a dynamic language—but there is value in signaling that subclasses
of Party should provide an implementation for monthlyCost, particularly if more sub-
classes get added later on. A good way to provide this signal is a trap method
like this:

class Party…
 get monthlyCost() {
 throw new SubclassResponsibilityError();
 }

I call such an error a subclass responsibility error as that was the name used
in Smalltalk.

Chapter 12 Dealing with Inheritance352

ptg26261585

Pull Up Field
inverse of: Push Down Field (361)

class Employee {...} // Java

class Salesman extends Employee {
 private String name;
}

class Engineer extends Employee {
 private String name;
}

class Employee {
 protected String name;
}

class Salesman extends Employee {...}
class Engineer extends Employee {...}

Motivation

If subclasses are developed independently, or combined through refactoring, I
often find that they duplicate features. In particular, certain fields can be dupli-
cates. Such fields sometimes have similar names—but not always. The only way
I can tell what is going on is by looking at the fields and examining how they
are used. If they are being used in a similar way, I can pull them up into the
superclass.

By doing this, I reduce duplication in two ways. I remove the duplicate data
declaration and I can then move behavior that uses the field from the subclasses
to the superclass.

353Pull Up Field

ptg26261585

Many dynamic languages do not define fields as part of their class definition—
instead, fields appear when they are first assigned to. In this case, pulling up a
field is essentially a consequence of Pull Up Constructor Body (355).

Mechanics

Inspect all users of the candidate field to ensure they are used in the
same way.

If the fields have different names, use Rename Field (244) to give them the
same name.

Create a new field in the superclass.

The new field will need to be accessible to subclasses (protected in common
languages).

Delete the subclass fields.

Test.

Chapter 12 Dealing with Inheritance354

ptg26261585

Pull Up Constructor Body

class Party {...}

class Employee extends Party {
 constructor(name, id, monthlyCost) {
 super();
 this._id = id;
 this._name = name;
 this._monthlyCost = monthlyCost;
 }
}

class Party {
 constructor(name){
 this._name = name;
 }
}

class Employee extends Party {
 constructor(name, id, monthlyCost) {
 super(name);
 this._id = id;
 this._monthlyCost = monthlyCost;
 }
}

355Pull Up Constructor Body

ptg26261585

Motivation

Constructors are tricky things. They aren’t quite normal methods—so I’m more
restricted in what I can do with them.

If I see subclass methods with common behavior, my first thought is to use
Extract Function (106) followed by Pull Up Method (350), which will move it nicely
into the superclass. Constructors tangle that—because they have special rules
about what can be done in what order, so I need a slightly different approach.

If this refactoring starts getting messy, I reach for Replace Constructor with Factory
Function (334).

Mechanics

Define a superclass constructor, if one doesn’t already exist. Ensure it’s called
by subclass constructors.

Use Slide Statements (223) to move any common statements to just after the
super call.

Remove the common code from each subclass and put it in the superclass.
Add to the super call any constructor parameters referenced in the
common code.

Test.

If there is any common code that cannot move to the start of the constructor,
use Extract Function (106) followed by Pull Up Method (350).

Example

I start with the following code:

class Party {}

class Employee extends Party {
 constructor(name, id, monthlyCost) {
 super();
 this._id = id;
 this._name = name;
 this._monthlyCost = monthlyCost;
 }
 // rest of class...

Chapter 12 Dealing with Inheritance356

ptg26261585

class Department extends Party {
 constructor(name, staff){
 super();
 this._name = name;
 this._staff = staff;
 }
 // rest of class...

The common code here is the assignment of the name. I use Slide Statements
(223) to move the assignment in Employee next to the call to super():

class Employee extends Party {
 constructor(name, id, monthlyCost) {
 super();
 this._name = name;
 this._id = id;
 this._monthlyCost = monthlyCost;
 }
 // rest of class...

With that tested, I move the common code to the superclass. Since that code
contains a reference to a constructor argument, I pass that in as a parameter.

class Party…
 constructor(name){
 this._name = name;
 }

class Employee…
 constructor(name, id, monthlyCost) {
 super(name);
 this._id = id;
 this._monthlyCost = monthlyCost;
 }

class Department…
 constructor(name, staff){
 super(name);
 this._staff = staff;
 }

Run the tests, and I’m done.
Most of the time, constructor behavior will work like this: Do the common

elements first (with a super call), then do extra work that the subclass needs.
Occasionally, however, there is some common behavior later.

Consider this example:

357Pull Up Constructor Body

ptg26261585

class Employee…
 constructor (name) {...}

 get isPrivileged() {...}

 assignCar() {...}

class Manager extends Employee…
 constructor(name, grade) {
 super(name);
 this._grade = grade;
 if (this.isPrivileged) this.assignCar(); // every subclass does this
 }

 get isPrivileged() {
 return this._grade > 4;
 }

The wrinkle here comes from the fact that the call to isPrivileged can’t be made
until after the grade field is assigned, and that can only be done in the subclass.

In this case, I do Extract Function (106) on the common code:

class Manager…
 constructor(name, grade) {
 super(name);
 this._grade = grade;
 this.finishConstruction();
 }

finishConstruction() {
 if (this.isPrivileged) this.assignCar();
 }

Then, I use Pull Up Method (350) to move it to the superclass.

class Employee…
 finishConstruction() {
 if (this.isPrivileged) this.assignCar();
 }

Chapter 12 Dealing with Inheritance358

ptg26261585

Push Down Method
inverse of: Pull Up Method (350)

class Employee {
 get quota {...}
}

class Engineer extends Employee {...}
class Salesman extends Employee {...}

class Employee {...}
class Engineer extends Employee {...}
class Salesman extends Employee {
 get quota {...}
}

Motivation

If a method is only relevant to one subclass (or a small proportion of subclasses),
removing it from the superclass and putting it only on the subclass(es) makes
that clearer. I can only do this refactoring if the caller knows it’s working with a
particular subclass—otherwise, I should use Replace Conditional with Polymorphism
(272) with some placebo behavior on the superclass.

Mechanics

Copy the method into every subclass that needs it.

Remove the method from the superclass.

359Push Down Method

ptg26261585

Test.

Remove the method from each superclass that doesn’t need it.

Test.

Chapter 12 Dealing with Inheritance360

ptg26261585

Push Down Field
inverse of: Pull Up Field (353)

class Employee { // Java
 private String quota;
}

class Engineer extends Employee {...}
class Salesman extends Employee {...}

class Employee {...}
class Engineer extends Employee {...}

class Salesman extends Employee {
 protected String quota;
}

Motivation

If a field is only used by one subclass (or a small proportion of subclasses), I
move it to those subclasses.

Mechanics

Declare field in all subclasses that need it.

Remove the field from the superclass.

Test.

Remove the field from all subclasses that don’t need it.

Test.

361Push Down Field

ptg26261585

Replace Type Code with Subclasses
subsumes: Replace Type Code with State/Strategy
subsumes: Extract Subclass
inverse of: Remove Subclass (369)

function createEmployee(name, type) {
 return new Employee(name, type);
}

function createEmployee(name, type) {
 switch (type) {
 case "engineer": return new Engineer(name);
 case "salesman": return new Salesman(name);
 case "manager": return new Manager (name);
 }

Motivation

Software systems often need to represent different kinds of a similar thing. I may
classify employees by their job type (engineer, manager, salesman), or orders by
their priority (rush, regular). My first tool for handling this is some kind of type
code field—depending on the language, that might be an enum, symbol, string,
or number. Often, this type code will come from an external service that provides
me with the data I’m working on.

Most of the time, such a type code is all I need. But there are a couple of situ-
ations where I could do with something more, and that something more are
subclasses. There are two things that are particularly enticing about subclasses.
First, they allow me to use polymorphism to handle conditional logic. I find this

Chapter 12 Dealing with Inheritance362

ptg26261585

most helpful when I have several functions that invoke different behavior
depending on the value of the type code. With subclasses, I can apply Replace
Conditional with Polymorphism (272) to these functions.

The second case is where I have fields or methods that are only valid for par-
ticular values of a type code, such as a sales quota that’s only applicable to the
“salesman” type code. I can then create the subclass and apply Push Down Field
(361). While I can include validation logic to ensure a field is only used when
the type code has the correct value, using a subclass makes the relationship more
explicit.

When using Replace Type Code with Subclasses, I need to consider whether
to apply it directly to the class I’m looking at, or to the type code itself. Do I
make engineer a subtype of employee, or should I give the employee an employee
type property which can have subtypes for engineer and manager? Using direct
subclassing is simpler, but I can’t use it for the job type if I need it for something
else. I also can’t use direct subclasses if the type is mutable. If I need to move
the subclasses to an employee type property, I can do that by using Replace
Primitive with Object (174) on the type code to create an employee type class and
then using Replace Type Code with Subclasses on that new class.

Mechanics

Self-encapsulate the type code field.

Pick one type code value. Create a subclass for that type code. Override the
type code getter to return the literal type code value.

Create selector logic to map from the type code parameter to the new
subclass.

With direct inheritance, use Replace Constructor with Factory Function (334) and put
the selector logic in the factory. With indirect inheritance, the selector logic may
stay in the constructor.

Test.

Repeat creating the subclass and adding to the selector logic for each type
code value. Test after each change.

Remove the type code field.

Test.

Use Push Down Method (359) and Replace Conditional with Polymorphism (272)
on any methods that use the type code accessors. Once all are replaced, you
can remove the type code accessors.

363Replace Type Code with Subclasses

ptg26261585

Example

I’ll start with this overused employee example:

class Employee…
 constructor(name, type){
 this.validateType(type);
 this._name = name;
 this._type = type;
 }
 validateType(arg) {
 if (!["engineer", "manager", "salesman"].includes(arg))
 throw new Error(`Employee cannot be of type ${arg}`);
 }
 toString() {return `${this._name} (${this._type})`;}

My first step is to use Encapsulate Variable (132) to self-encapsulate the type code.

class Employee…
 get type() {return this._type;}
 toString() {return `${this._name} (${this.type})`;}

Note that toString uses the new getter by removing the underscore.

I pick one type code, the engineer, to start with. I use direct inheritance, sub-
classing the employee class itself. The employee subclass is simple—just overriding
the type code getter with the appropriate literal value.

class Engineer extends Employee {
 get type() {return "engineer";}
}

Although JavaScript constructors can return other objects, things will get messy
if I try to put selector logic in there, since that logic gets intertwined with field
initialization. So I use Replace Constructor with Factory Function (334) to create a
new space for it.

function createEmployee(name, type) {
 return new Employee(name, type);
}

To use the new subclass, I add selector logic into the factory.

function createEmployee(name, type) {
 switch (type) {
 case "engineer": return new Engineer(name, type);
 }
 return new Employee(name, type);
}

Chapter 12 Dealing with Inheritance364

ptg26261585

I test to ensure that worked out correctly. But, because I’m paranoid, I then
alter the return value of the engineer’s override and test again to ensure the test
fails. That way I know the subclass is being used. I correct the return value and
continue with the other cases. I can do them one at a time, testing after each
change.

class Salesman extends Employee {
 get type() {return "salesman";}
}

class Manager extends Employee {
 get type() {return "manager";}
}

function createEmployee(name, type) {
 switch (type) {
 case "engineer": return new Engineer(name, type);
 case "salesman": return new Salesman(name, type);
 case "manager": return new Manager (name, type);
 }
 return new Employee(name, type);
}

Once I’m done with them all, I can remove the type code field and the
superclass getting method (the ones in the subclasses remain).

class Employee…
 constructor(name, type){
 this.validateType(type);
 this._name = name;

this._type = type;
 }

get type() {return this._type;}
 toString() {return `${this._name} (${this.type})`;}

After testing to ensure all is still well, I can remove the validation logic, since
the switch is effectively doing the same thing.

class Employee…
 constructor(name, type){

this.validateType(type);
 this._name = name;
 }

365Replace Type Code with Subclasses

ptg26261585

function createEmployee(name, type) {
 switch (type) {
 case "engineer": return new Engineer(name, type);
 case "salesman": return new Salesman(name, type);
 case "manager": return new Manager (name, type);
 default: throw new Error(`Employee cannot be of type ${type}`);
 }
return new Employee(name, type);

}

The type argument to the constructor is now useless, so it falls victim to Change
Function Declaration (124).

class Employee…
 constructor(name, type){
 this._name = name;
 }

function createEmployee(name, type) {
 switch (type) {
 case "engineer": return new Engineer(name, type);
 case "salesman": return new Salesman(name, type);
 case "manager": return new Manager (name, type);
 default: throw new Error(`Employee cannot be of type ${type}`);
 }
}

I still have the type code accessors on the subclasses—get type. I’ll usually want
to remove these too, but that may take a bit of time due to other methods that
depend on them. I’ll use Replace Conditional with Polymorphism (272) and Push
Down Method (359) to deal with these. At some point, I’ll have no code that uses
the type getters, so I will subject them to the tender mercies of Remove Dead Code
(237).

Example: Using Indirect Inheritance

Let’s go back to the starting case—but this time, I already have existing subclasses
for part-time and full-time employees, so I can’t subclass from Employee for the type
codes. Another reason to not use direct inheritance is keeping the ability to
change the type of employee.

Chapter 12 Dealing with Inheritance366

ptg26261585

class Employee…
 constructor(name, type){
 this.validateType(type);
 this._name = name;
 this._type = type;
 }
 validateType(arg) {
 if (!["engineer", "manager", "salesman"].includes(arg))
 throw new Error(`Employee cannot be of type ${arg}`);
 }
 get type() {return this._type;}
 set type(arg) {this._type = arg;}

 get capitalizedType() {
 return this._type.charAt(0).toUpperCase() + this._type.substr(1).toLowerCase();
 }
 toString() {
 return `${this._name} (${this.capitalizedType})`;
 }

This time toString is a bit more complicated, to allow me to illustrate something
shortly.

My first step is to use Replace Primitive with Object (174) on the type code.

class EmployeeType {
 constructor(aString) {
 this._value = aString;
 }
 toString() {return this._value;}
}

class Employee…
 constructor(name, type){
 this.validateType(type);
 this._name = name;
 this.type = type;
 }
 validateType(arg) {
 if (!["engineer", "manager", "salesman"].includes(arg))
 throw new Error(`Employee cannot be of type ${arg}`);
 }
 get typeString() {return this._type.toString();}
 get type() {return this._type;}
 set type(arg) {this._type = new EmployeeType(arg);}

 get capitalizedType() {
 return this.typeString.charAt(0).toUpperCase()
 + this.typeString.substr(1).toLowerCase();
 }

367Replace Type Code with Subclasses

ptg26261585

 toString() {
 return `${this._name} (${this.capitalizedType})`;
 }

I then apply the usual mechanics of Replace Type Code with Subclasses to the
employee type.

class Employee…
 set type(arg) {this._type = Employee.createEmployeeType(arg);}

 static createEmployeeType(aString) {
 switch(aString) {
 case "engineer": return new Engineer();
 case "manager": return new Manager ();
 case "salesman": return new Salesman();
 default: throw new Error(`Employee cannot be of type ${aString}`);
 }
 }

class EmployeeType {
}
class Engineer extends EmployeeType {
 toString() {return "engineer";}
}
class Manager extends EmployeeType {
 toString() {return "manager";}
}
class Salesman extends EmployeeType {
 toString() {return "salesman";}
}

If I were leaving it at that, I could remove the empty EmployeeType. But I prefer
to leave it there as it makes explicit the relationship between the various
subclasses. It’s also a handy spot for moving other behavior there, such as the
capitalization logic I tossed into the example specifically to illustrate this point.

class Employee…
 toString() {
 return `${this._name} (${this.type.capitalizedName})`;
 }

class EmployeeType…
 get capitalizedName() {
 return this.toString().charAt(0).toUpperCase()
 + this.toString().substr(1).toLowerCase();
 }

For those familiar with the first edition of the book, this example essentially supersedes
the Replace Type Code with State/Strategy. I now think of that refactoring as Replace
Type Code with Subclasses using indirect inheritance, so didn’t consider it worth its
own entry in the catalog. (I never liked the name anyway.)

Chapter 12 Dealing with Inheritance368

ptg26261585

Remove Subclass
formerly: Replace Subclass with Fields
inverse of: Replace Type Code with Subclasses (362)

class Person {
 get genderCode() {return "X";}
}
class Male extends Person {
 get genderCode() {return "M";}
}
class Female extends Person {
 get genderCode() {return "F";}
}

class Person {
 get genderCode() {return this._genderCode;}
}

Motivation

Subclasses are useful. They support variations in data structure and polymorphic
behavior. They are a good way to program by difference. But as a software system
evolves, subclasses can lose their value as the variations they support are moved
to other places or removed altogether. Sometimes, subclasses are added in antic-
ipation of features that never end up being built, or end up being built in a way
that doesn’t need the subclasses.

A subclass that does too little incurs a cost in understanding that is no longer
worthwhile. When that time comes, it’s best to remove the subclass, replacing it
with a field on its superclass.

369Remove Subclass

ptg26261585

Mechanics

Use Replace Constructor with Factory Function (334) on the subclass constructor.

If the clients of the constructors use a data field to decide which subclass to create,
put that decision logic into a superclass factory method.

If any code tests against the subclass’s types, use Extract Function (106) on
the type test and Move Function (198) to move it to the superclass. Test after
each change.

Create a field to represent the subclass type.

Change the methods that refer to the subclass to use the new type field.

Delete the subclass.

Test.

Often, this refactoring is used on a group of subclasses at once—in which case
carry out the steps to encapsulate them (add factory function, move type tests)
first, then individually fold them into the superclass.

Example

I’ll start with this stump of subclasses:

class Person…
 constructor(name) {
 this._name = name;
 }
 get name() {return this._name;}
 get genderCode() {return "X";}
 // snip

class Male extends Person {
 get genderCode() {return "M";}
}

class Female extends Person {
 get genderCode() {return "F";}
}

If that’s all that a subclass does, it’s not really worth having. But before I remove
these subclasses, it’s usually worth checking to see if there’s any subclass-
dependent behavior in the clients that should be moved in there. In this case, I
don’t find anything worth keeping the subclasses for.

Chapter 12 Dealing with Inheritance370

ptg26261585

client…
 const numberOfMales = people.filter(p => p instanceof Male).length;

Whenever I want to change how I represent something, I try to first encapsulate
the current representation to minimize the impact on any client code. When it
comes to creating subclasses, the way to encapsulate is to use Replace Constructor
with Factory Function (334). In this case, there’s a couple of ways I could make the
factory.

The most direct way is to create a factory method for each constructor.

function createPerson(name) {
 return new Person(name);
}
function createMale(name) {
 return new Male(name);
}
function createFemale(name) {
 return new Female(name);
}

But although that’s the direct choice, objects like this are often loaded from a
source that uses the gender codes directly.

function loadFromInput(data) {
 const result = [];
 data.forEach(aRecord => {
 let p;
 switch (aRecord.gender) {
 case 'M': p = new Male(aRecord.name); break;
 case 'F': p = new Female(aRecord.name); break;
 default: p = new Person(aRecord.name);
 }
 result.push(p);
 });
 return result;
}

In that case, I find it better to use Extract Function (106) on the selection logic
for which class to create, and make that the factory function.

function createPerson(aRecord) {
 let p;
 switch (aRecord.gender) {
 case 'M': p = new Male(aRecord.name); break;
 case 'F': p = new Female(aRecord.name); break;
 default: p = new Person(aRecord.name);
 }
 return p;
}

371Remove Subclass

ptg26261585

function loadFromInput(data) {
 const result = [];
 data.forEach(aRecord => {
 result.push(createPerson(aRecord));
 });
 return result;
}

While I’m there, I’ll clean up those two functions. I’ll use Inline Variable (123)
on createPerson:

function createPerson(aRecord) {
 switch (aRecord.gender) {
 case 'M': return new Male (aRecord.name);
 case 'F': return new Female(aRecord.name);
 default: return new Person(aRecord.name);
 }
}

and Replace Loop with Pipeline (231) on loadFromInput:

function loadFromInput(data) {
 return data.map(aRecord => createPerson(aRecord));
}

The factory encapsulates the creation of the subclasses, but there is also the
use of instanceof—which never smells good. I use Extract Function (106) on the type
check.

client…
 const numberOfMales = people.filter(p => isMale(p)).length;

function isMale(aPerson) {return aPerson instanceof Male;}

Then I use Move Function (198) to move it into Person.

class Person…
 get isMale() {return this instanceof Male;}

client…
 const numberOfMales = people.filter(p => p.isMale).length;

With that refactoring done, all knowledge of the subclasses is now safely en-
cased within the superclass and the factory function. (Usually I’m wary of a
superclass referring to a subclass, but this code isn’t going to last until my next
cup of tea, so I’m not going worry about it.)

I now add a field to represent the difference between the subclasses; since I’m
using a code loaded from elsewhere, I might as well just use that.

Chapter 12 Dealing with Inheritance372

ptg26261585

class Person…
 constructor(name, genderCode) {
 this._name = name;
 this._genderCode = genderCode || "X";
 }

 get genderCode() {return this._genderCode;}

When initializing it, I set it to the default case. (As a side note, although most
people can be classified as male or female, there are people who can’t. It’s a
common modeling mistake to forget that.)

I then take the male case and fold its logic into the superclass. This involves
modifying the factory to return a Person and modifying any instanceof tests to use
the gender code field.

function createPerson(aRecord) {
 switch (aRecord.gender) {
 case 'M': return new Person(aRecord.name, "M");
 case 'F': return new Female(aRecord.name);
 default: return new Person(aRecord.name);
 }
}

class Person…
 get isMale() {return "M" === this._genderCode;}

I test, remove the male subclass, test again, and repeat for the female subclass.

function createPerson(aRecord) {
 switch (aRecord.gender) {
 case 'M': return new Person(aRecord.name, "M");
 case 'F': return new Person(aRecord.name, "F");
 default: return new Person(aRecord.name);
 }
}

I find the lack of symmetry with the gender code to be annoying. A future
reader of the code will always wonder about this lack of symmetry. So I prefer
to change the code to make it symmetrical—if I can do it without introducing
any other complexity, which is the case here.

function createPerson(aRecord) {
 switch (aRecord.gender) {
 case 'M': return new Person(aRecord.name, "M");
 case 'F': return new Person(aRecord.name, "F");
 default: return new Person(aRecord.name, "X");
 }
}

373Remove Subclass

ptg26261585

class Person…
 constructor(name, genderCode) {
 this._name = name;
 this._genderCode = genderCode || "X";
 }

Chapter 12 Dealing with Inheritance374

ptg26261585

Extract Superclass

class Department {
 get totalAnnualCost() {...}
 get name() {...}
 get headCount() {...}
}

class Employee {
 get annualCost() {...}
 get name() {...}
 get id() {...}
}

class Party {
 get name() {...}
 get annualCost() {...}
}

class Department extends Party {
 get annualCost() {...}
 get headCount() {...}
}

class Employee extends Party {
 get annualCost() {...}
 get id() {...}
}

375Extract Superclass

ptg26261585

Motivation

If I see two classes doing similar things, I can take advantage of the basic mech-
anism of inheritance to pull their similarities together into a superclass. I can use
Pull Up Field (353) to move common data into the superclass, and Pull Up Method
(350) to move the common behavior.

Many writers on object orientation treat inheritance as something that should
be carefully planned in advance, based on some kind of classification structure
in the “real world.” Such classification structures can be a hint towards using in-
heritance—but just as often inheritance is something I realize during the evolution
of a program, as I find common elements that I want to pull together.

An alternative to Extract Superclass is Extract Class (182). Here you have, essen-
tially, a choice between using inheritance or delegation as a way to unify duplicate
behavior. Often Extract Superclass is the simpler approach, so I’ll do this first
knowing I can use Replace Superclass with Delegate (399) should I need to later.

Mechanics

Create an empty superclass. Make the original classes its subclasses.

If needed, use Change Function Declaration (124) on the constructors.

Test.

One by one, use Pull Up Constructor Body (355), Pull Up Method (350), and
Pull Up Field (353) to move common elements to the superclass.

Examine remaining methods on the subclasses. See if there are common
parts. If so, use Extract Function (106) followed by Pull Up Method (350).

Check clients of the original classes. Consider adjusting them to use the
superclass interface.

Example

I’m pondering these two classes, they share some common functionality—their
name and the notions of annual and monthly costs:

Chapter 12 Dealing with Inheritance376

ptg26261585

class Employee {
 constructor(name, id, monthlyCost) {
 this._id = id;
 this._name = name;
 this._monthlyCost = monthlyCost;
 }
 get monthlyCost() {return this._monthlyCost;}
 get name() {return this._name;}
 get id() {return this._id;}

 get annualCost() {
 return this.monthlyCost * 12;
 }
}

class Department {
 constructor(name, staff){
 this._name = name;
 this._staff = staff;
 }
 get staff() {return this._staff.slice();}
 get name() {return this._name;}

 get totalMonthlyCost() {
 return this.staff
 .map(e => e.monthlyCost)
 .reduce((sum, cost) => sum + cost);
 }
 get headCount() {
 return this.staff.length;
 }
 get totalAnnualCost() {
 return this.totalMonthlyCost * 12;
 }
}

I can make the common behavior more explicit by extracting a common
superclass from them.

I begin by creating an empty superclass and letting them both extend from it.

class Party {}

class Employee extends Party {
 constructor(name, id, monthlyCost) {
 super();
 this._id = id;
 this._name = name;
 this._monthlyCost = monthlyCost;
 }
 // rest of class...

377Extract Superclass

ptg26261585

class Department extends Party {
 constructor(name, staff){
 super();
 this._name = name;
 this._staff = staff;
 }
 // rest of class...

When doing Extract Superclass, I like to start with the data, which in JavaScript
involves manipulating the constructor. So I start with Pull Up Field (353) to pull
up the name.

class Party…
 constructor(name){
 this._name = name;
 }

class Employee…
 constructor(name, id, monthlyCost) {
 super(name);
 this._id = id;
 this._monthlyCost = monthlyCost;
 }

class Department…
 constructor(name, staff){
 super(name);
 this._staff = staff;
 }

As I get data up to the superclass, I can also apply Pull Up Method (350) on
associated methods. First, the name:

class Party…
 get name() {return this._name;}

class Employee…
get name() {return this._name;}

class Department…
get name() {return this._name;}

I have two methods with similar bodies.

class Employee…
 get annualCost() {
 return this.monthlyCost * 12;
 }

Chapter 12 Dealing with Inheritance378

ptg26261585

class Department…
 get totalAnnualCost() {
 return this.totalMonthlyCost * 12;
 }

The methods they use, monthlyCost and totalMonthlyCost, have different names and
different bodies—but do they represent the same intent? If so, I should use Change
Function Declaration (124) to unify their names.

class Department…
 get totalAnnualCost() {
 return this.monthlyCost * 12;
 }

 get monthlyCost() { … }

I then do a similar renaming to the annual costs:

class Department…
 get annualCost() {
 return this.monthlyCost * 12;
 }

I can now apply Pull Up Method (350) to the annual cost methods.

class Party…
 get annualCost() {
 return this.monthlyCost * 12;
 }

class Employee…
get annualCost() {
return this.monthlyCost * 12;

}

class Department…
get annualCost() {
return this.monthlyCost * 12;

}

379Extract Superclass

ptg26261585

Collapse Hierarchy

class Employee {...}
class Salesman extends Employee {...}

class Employee {...}

Motivation

When I’m refactoring a class hierarchy, I’m often pulling and pushing features
around. As the hierarchy evolves, I sometimes find that a class and its parent are
no longer different enough to be worth keeping separate. At this point, I’ll merge
them together.

Mechanics

Choose which one to remove.

I choose based on which name makes most sense in the future. If neither name
is best, I’ll pick one arbitrarily.

Use Pull Up Field (353), Push Down Field (361), Pull Up Method (350), and Push
Down Method (359) to move all the elements into a single class.

Adjust any references to the victim to change them to the class that will
stay.

Remove the empty class.

Test.

Chapter 12 Dealing with Inheritance380

ptg26261585

Replace Subclass with Delegate

class Order {
 get daysToShip() {
 return this._warehouse.daysToShip;
 }
}

class PriorityOrder extends Order {
 get daysToShip() {
 return this._priorityPlan.daysToShip;
 }
}

class Order {
 get daysToShip() {
 return (this._priorityDelegate)
 ? this._priorityDelegate.daysToShip
 : this._warehouse.daysToShip;
 }
}

class PriorityOrderDelegate {
 get daysToShip() {
 return this._priorityPlan.daysToShip
 }
}

Motivation

If I have some objects whose behavior varies from category to category, the nat-
ural mechanism to express this is inheritance. I put all the common data and
behavior in the superclass, and let each subclass add and override features as

381Replace Subclass with Delegate

ptg26261585

needed. Object-oriented languages make this simple to implement and thus a
familiar mechanism.

But inheritance has its downsides. Most obviously, it’s a card that can only be
played once. If I have more than one reason to vary something, I can only use
inheritance for a single axis of variation. So, if I want to vary behavior of people
by their age category and by their income level, I can either have subclasses for
young and senior, or for well-off and poor—I can’t have both.

A further problem is that inheritance introduces a very close relationship be-
tween classes. Any change I want to make to the parent can easily break children,
so I have to be careful and understand how children derive from the superclass.
This problem is made worse when the logic of the two classes resides in different
modules and is looked after by different teams.

Delegation handles both of these problems. I can delegate to many different
classes for different reasons. Delegation is a regular relationship between
objects—so I can have a clear interface to work with, which is much less coupling
than subclassing. It’s therefore common to run into the problems with subclassing
and apply Replace Subclass with Delegate.

There is a popular principle: “Favor object composition over class inheritance”
(where composition is effectively the same as delegation). Many people take this
to mean “inheritance considered harmful” and claim that we should never use
inheritance. I use inheritance frequently, partly because I always know I can use
Replace Subclass with Delegate should I need to change it later. Inheritance is a
valuable mechanism that does the job most of the time without problems. So I
reach for it first, and move onto delegation when it starts to rub badly. This usage
is actually consistent with the principle—which comes from the Gang of Four
book [gof] that explains how inheritance and composition work together. The
principle was a reaction to the overuse of inheritance.

Those who are familiar with the Gang of Four book may find it helpful to think
of this refactoring as replacing subclasses with the State or Strategy patterns.
Both of these patterns are structurally the same, relying on the host delegating
to a separate hierarchy. Not all cases of Replace Subclass with Delegate involve
an inheritance hierarchy for the delegate (as the first example below illustrates),
but setting up a hierarchy for states or strategies is often useful.

Mechanics

If there are many callers for the constructors, apply Replace Constructor with
Factory Function (334).

Create an empty class for the delegate. Its constructor should take any
subclass-specific data as well as, usually, a back-reference to the superclass.

Add a field to the superclass to hold the delegate.

Chapter 12 Dealing with Inheritance382

ptg26261585

Modify the creation of the subclass so that it initializes the delegate field
with an instance of the delegate.

This can be done in the factory function, or in the constructor if the constructor
can reliably tell whether to create the correct delegate.

Choose a subclass method to move to the delegate class.

Use Move Function (198) to move it to the delegate class. Don’t remove the
source’s delegating code.

If the method needs elements that should move to the delegate, move them. If it
needs elements that should stay in the superclass, add a field to the delegate that
refers to the superclass.

If the source method has callers outside the class, move the source’s delegat-
ing code from the subclass to the superclass, guarding it with a check for
the presence of the delegate. If not, apply Remove Dead Code (237).

If there’s more than one subclass, and you start duplicating code within them, use
Extract Superclass (375). In this case, any delegating methods on the source super-
class no longer need a guard if the default behavior is moved to the delegate
superclass.

Test.

Repeat until all the methods of the subclass are moved.

Find all callers of the subclasses’s constructor and change them to use the
superclass constructor.

Test.

Use Remove Dead Code (237) on the subclass.

Example

I have a class that makes a booking for a show.

class Booking…
 constructor(show, date) {
 this._show = show;
 this._date = date;
 }

There is a subclass for premium booking that takes into account various extras
that are available.

383Replace Subclass with Delegate

ptg26261585

class PremiumBooking extends Booking…
 constructor(show, date, extras) {
 super(show, date);
 this._extras = extras;
 }

There are quite a few changes that the premium booking makes to what it in-
herits from the superclass. As is typical with this kind of programming-by-
difference, in some cases the subclass overrides methods on the superclass, in
others it adds new methods that are only relevant for the subclass. I won’t go
into all of them, but I will pick out a few interesting cases.

First, there is a simple override. Regular bookings offer a talkback after the
show, but only on nonpeak days.

class Booking…
 get hasTalkback() {
 return this._show.hasOwnProperty('talkback') && !this.isPeakDay;
 }

Premium bookings override this to offer talkbacks on all days.

class PremiumBooking…
 get hasTalkback() {
 return this._show.hasOwnProperty('talkback');
 }

Determining the price is a similar override, with a twist that the premium
method calls the superclass method.

class Booking…
 get basePrice() {
 let result = this._show.price;
 if (this.isPeakDay) result += Math.round(result * 0.15);
 return result;
 }

class PremiumBooking…
 get basePrice() {
 return Math.round(super.basePrice + this._extras.premiumFee);
 }

The last example is where the premium booking offers a behavior that isn’t
present on the superclass.

class PremiumBooking…
 get hasDinner() {
 return this._extras.hasOwnProperty('dinner') && !this.isPeakDay;
 }

Chapter 12 Dealing with Inheritance384

ptg26261585

Inheritance works well for this example. I can understand the base class without
having to understand the subclass. The subclass is defined just by saying how it
differs from the base case—both reducing duplication and clearly communicating
what are the differences it’s introducing.

Actually, it isn’t quite as perfect as the previous paragraph implies. There are
things in the superclass structure that only make sense due to the subclass—such
as methods that have been factored in such a way as to make it easier to override
just the right kinds of behavior. So although most of the time I can modify the
base class without having to understand subclasses, there are occasions where
such mindful ignorance of the subclasses will lead me to breaking a subclass by
modifying the superclass. However, if these occasions are not too common, the
inheritance pays off—provided I have good tests to detect a subclass breakage.

So why would I want to change such a happy situation by using Replace Sub-
class with Delegate? Inheritance is a tool that can only be used once—so if I have
another reason to use inheritance, and I think it will benefit me more than the
premium booking subclass, I’ll need to handle premium bookings a different way.
Also, I may need to change from the default booking to the premium booking
dynamically—i.e., support a method like aBooking.bePremium(). In some cases, I can
avoid this by creating a whole new object (a common example is where an HTTP
request loads new data from the server). But sometimes, I need to modify a data
structure and not rebuild it from scratch, and it is difficult to just replace a single
booking that’s referred to from many different places. In such situations, it can
be useful to allow a booking to switch from default to premium and back again.

When these needs crop up, I need to apply Replace Subclass with Delegate. I
have clients call the constructors of the two classes to make the bookings:

booking client
 aBooking = new Booking(show,date);

premium client
 aBooking = new PremiumBooking(show, date, extras);

Removing subclasses will alter all of this, so I like to encapsulate the constructor
calls with Replace Constructor with Factory Function (334).

top level…
 function createBooking(show, date) {
 return new Booking(show, date);
 }
 function createPremiumBooking(show, date, extras) {
 return new PremiumBooking (show, date, extras);
 }

booking client
 aBooking = createBooking(show, date);

385Replace Subclass with Delegate

ptg26261585

premium client
 aBooking = createPremiumBooking(show, date, extras);

I now make the new delegate class. Its constructor parameters are those param-
eters that are only used in the subclass, together with a back-reference to the
booking object. I’ll need this because several subclass methods require access
to data stored in the superclass. Inheritance makes this easy to do, but with a
delegate I need a back-reference.

class PremiumBookingDelegate…
 constructor(hostBooking, extras) {
 this._host = hostBooking;
 this._extras = extras;
 }

I now connect the new delegate to the booking object. I do this by modifying
the factory function for premium bookings.

top level…
 function createPremiumBooking(show, date, extras) {
 const result = new PremiumBooking (show, date, extras);

result._bePremium(extras);
 return result;
 }

class Booking…
 _bePremium(extras) {
 this._premiumDelegate = new PremiumBookingDelegate(this, extras);
 }

I use a leading underscore on _bePremium to indicate that it shouldn’t be part of
the public interface for Booking. Of course, if the point of doing this refactoring is
to allow a booking to mutate to premium, it can be a public method.

Alternatively, I can do all the connections in the constructor for Booking. In order to do
that, I need some way to signal to the constructor that we have a premium booking.
That could be an extra parameter, or just the use of extras if I can be sure that it is always
present when used with a premium booking. Here, I prefer the explicitness of doing
this through the factory function.

With the structures set up, it’s time to start moving the behavior. The first case
I’ll consider is the simple override of hasTalkback. Here’s the existing code:

class Booking…
 get hasTalkback() {
 return this._show.hasOwnProperty('talkback') && !this.isPeakDay;
 }

Chapter 12 Dealing with Inheritance386

ptg26261585

class PremiumBooking…
 get hasTalkback() {
 return this._show.hasOwnProperty('talkback');
 }

I use Move Function (198) to move the subclass method to the delegate. To
make it fit its home, I route any access to superclass data with a call to _host.

class PremiumBookingDelegate…
 get hasTalkback() {
 return this._host._show.hasOwnProperty('talkback');
 }

class PremiumBooking…
 get hasTalkback() {
 return this._premiumDelegate.hasTalkback;
 }

I test to ensure everything is working, then delete the subclass method:

class PremiumBooking…
get hasTalkback() {
return this._premiumDelegate.hasTalkback;

}

I run the tests at this point, expecting some to fail.
Now I finish the move by adding dispatch logic to the superclass method to

use the delegate if it is present.

class Booking…
 get hasTalkback() {
 return (this._premiumDelegate)
 ? this._premiumDelegate.hasTalkback

: this._show.hasOwnProperty('talkback') && !this.isPeakDay;
 }

The next case I’ll look at is the base price.

class Booking…
 get basePrice() {
 let result = this._show.price;
 if (this.isPeakDay) result += Math.round(result * 0.15);
 return result;
 }

class PremiumBooking…
 get basePrice() {
 return Math.round(super.basePrice + this._extras.premiumFee);
 }

387Replace Subclass with Delegate

ptg26261585

This is almost the same, but there is a wrinkle in the form of the pesky call on
super (which is pretty common in these kinds of subclass extension cases). When
I move the subclass code to the delegate, I’ll need to call the parent case—but I
can’t just call this._host._basePrice without getting into an endless recursion.

I have a couple of options here. One is to apply Extract Function (106) on the
base calculation to allow me to separate the dispatch logic from price calculation.
(The rest of the move is as before.)

class Booking…
 get basePrice() {
 return (this._premiumDelegate)
 ? this._premiumDelegate.basePrice
 : this._privateBasePrice;
 }

 get _privateBasePrice() {
 let result = this._show.price;
 if (this.isPeakDay) result += Math.round(result * 0.15);
 return result;
 }

class PremiumBookingDelegate…
 get basePrice() {
 return Math.round(this._host._privateBasePrice + this._extras.premiumFee);
 }

Alternatively, I can recast the delegate’s method as an extension of the base
method.

class Booking…
 get basePrice() {
 let result = this._show.price;
 if (this.isPeakDay) result += Math.round(result * 0.15);
 return (this._premiumDelegate)
 ? this._premiumDelegate.extendBasePrice(result)
 : result;
 }

class PremiumBookingDelegate…
extendBasePrice(base) {

 return Math.round(base + this._extras.premiumFee);
 }

Both work reasonably here; I have a slight preference for the latter as it’s a bit
smaller.

The last case is a method that only exists on the subclass.

Chapter 12 Dealing with Inheritance388

ptg26261585

class PremiumBooking…
 get hasDinner() {
 return this._extras.hasOwnProperty('dinner') && !this.isPeakDay;
 }

I move it from the subclass to the delegate:

class PremiumBookingDelegate…
 get hasDinner() {
 return this._extras.hasOwnProperty('dinner') && !this._host.isPeakDay;
 }

I then add dispatch logic to Booking:

class Booking…
 get hasDinner() {
 return (this._premiumDelegate)
 ? this._premiumDelegate.hasDinner
 : undefined;
 }

In JavaScript, accessing a property on an object where it isn’t defined returns
undefined, so I do that here. (Although my every instinct is to have it raise an error,
which would be the case in other object-oriented dynamic languages I’m used to.)

Once I’ve moved all the behavior out of the subclass, I can change the factory
method to return the superclass—and, once I’ve run tests to ensure all is well,
delete the subclass.

top level…
 function createPremiumBooking(show, date, extras) {
 const result = new PremiumBooking (show, date, extras);
 result._bePremium(extras);
 return result;
 }

class PremiumBooking extends Booking ...

This is one of those refactorings where I don’t feel that refactoring alone im-
proves the code. Inheritance handles this situation very well, whereas using del-
egation involves adding dispatch logic, two-way references, and thus extra
complexity. The refactoring may still be worthwhile, since the advantage of a
mutable premium status, or a need to use inheritance for other purposes, may
outweigh the disadvantage of losing inheritance.

Example: Replacing a Hierarchy

The previous example showed using Replace Subclass with Delegate on a single
subclass, but I can do the same thing with an entire hierarchy.

389Replace Subclass with Delegate

ptg26261585

function createBird(data) {
 switch (data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallow(data);
 case 'AfricanSwallow':
 return new AfricanSwallow(data);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrot(data);
 default:
 return new Bird(data);
 }
}

class Bird {
 constructor(data) {
 this._name = data.name;
 this._plumage = data.plumage;
 }
get name() {return this._name;}

get plumage() {
 return this._plumage || "average";
 }
get airSpeedVelocity() {return null;}

}

class EuropeanSwallow extends Bird {
get airSpeedVelocity() {return 35;}

}

class AfricanSwallow extends Bird {
 constructor(data) {
 super (data);
 this._numberOfCoconuts = data.numberOfCoconuts;
 }
get airSpeedVelocity() {

 return 40 - 2 * this._numberOfCoconuts;
 }
}

class NorwegianBlueParrot extends Bird {
 constructor(data) {
 super (data);
 this._voltage = data.voltage;
 this._isNailed = data.isNailed;
 }

get plumage() {
 if (this._voltage > 100) return "scorched";
 else return this._plumage || "beautiful";
 }

Chapter 12 Dealing with Inheritance390

ptg26261585

get airSpeedVelocity() {
 return (this._isNailed) ? 0 : 10 + this._voltage / 10;
 }
}

The system will shortly be making a big difference between birds tagged in
the wild and those tagged in captivity. That difference could be modeled as two
subclasses for Bird: WildBird and CaptiveBird. However, I can only use inheritance
once, so if I want to use subclasses for wild versus captive, I’ll have to remove
them for the species.

When several subclasses are involved, I’ll tackle them one at a time, starting
with a simple one—in this case, EuropeanSwallow. I create an empty delegate class for
the delegate.

class EuropeanSwallowDelegate {
}

I don’t put in any data or back-reference parameters yet. For this example, I’ll
introduce them as I need them.

I need to decide where to handle the initialization of the delegate field. Here,
since I have all the information in the single data argument to the constructor, I
decide to do it in the constructor. Since there are several delegates I could add,
I make a function to select the correct one based on the type code in the
document.

class Bird…
 constructor(data) {
 this._name = data.name;
 this._plumage = data.plumage;
 this._speciesDelegate = this.selectSpeciesDelegate(data);
 }

 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate();
 default: return null;
 }
 }

Now I have the structure set up, I can apply Move Function (198) to the European
swallow’s air speed velocity.

class EuropeanSwallowDelegate…
 get airSpeedVelocity() {return 35;}

class EuropeanSwallow…
 get airSpeedVelocity() {return this._speciesDelegate.airSpeedVelocity;}

391Replace Subclass with Delegate

ptg26261585

I change airSpeedVelocity on the superclass to call a delegate, if present.

class Bird…
 get airSpeedVelocity() {
 return this._speciesDelegate ? this._speciesDelegate.airSpeedVelocity : null;
 }

I remove the subclass.

class EuropeanSwallow extends Bird {
get airSpeedVelocity() {return this._speciesDelegate.airSpeedVelocity;}

}

top level…
 function createBird(data) {
 switch (data.type) {

case 'EuropeanSwallow':
return new EuropeanSwallow(data);

 case 'AfricanSwallow':
 return new AfricanSwallow(data);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrot(data);
 default:
 return new Bird(data);
 }
 }

Next I’ll tackle the African swallow. I create a class; this time, the constructor
needs the data document.

class AfricanSwallowDelegate…
 constructor(data) {
 this._numberOfCoconuts = data.numberOfCoconuts;
 }

class Bird…
 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate();
 case 'AfricanSwallow':
 return new AfricanSwallowDelegate(data);
 default: return null;
 }
 }

I use Move Function (198) on airSpeedVelocity.

Chapter 12 Dealing with Inheritance392

ptg26261585

class AfricanSwallowDelegate…
 get airSpeedVelocity() {
 return 40 - 2 * this._numberOfCoconuts;
 }

class AfricanSwallow…
 get airSpeedVelocity() {
 return this._speciesDelegate.airSpeedVelocity;
 }

I can now remove the African swallow subclass.

class AfricanSwallow extends Bird {
// all of the body ...
}

 function createBird(data) {
 switch (data.type) {

case 'AfricanSwallow':
return new AfricanSwallow(data);

 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrot(data);
 default:
 return new Bird(data);
 }
 }

Now for the Norwegian blue. Creating the class and moving the air speed
velocity uses the same steps as before, so I’ll just show the result.

class Bird…
 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate();
 case 'AfricanSwallow':
 return new AfricanSwallowDelegate(data);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrotDelegate(data);
 default: return null;
 }
 }

class NorwegianBlueParrotDelegate…
 constructor(data) {
 this._voltage = data.voltage;
 this._isNailed = data.isNailed;
 }
 get airSpeedVelocity() {
 return (this._isNailed) ? 0 : 10 + this._voltage / 10;
 }

393Replace Subclass with Delegate

ptg26261585

All well and good, but the Norwegian blue overrides the plumage property, which
I didn’t have to deal with for the other cases. The initial Move Function (198)
is simple enough, albeit with the need to modify the constructor to put in a
back-reference to the bird.

class NorwegianBlueParrot…
 get plumage() {
 return this._speciesDelegate.plumage;
 }

class NorwegianBlueParrotDelegate…
 get plumage() {
 if (this._voltage > 100) return "scorched";
 else return this._bird._plumage || "beautiful";
 }

 constructor(data, bird) {
 this._bird = bird;
 this._voltage = data.voltage;
 this._isNailed = data.isNailed;
 }

class Bird…
 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate();
 case 'AfricanSwallow':
 return new AfricanSwallowDelegate(data);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrotDelegate(data, this);
 default: return null;
 }
 }

The tricky step is how to remove the subclass method for plumage. If I do

class Bird…
 get plumage() {
 if (this._speciesDelegate)
 return this._speciesDelegate.plumage;
 else
 return this._plumage || "average";
 }

then I’ll get a bunch of errors because there is no plumage property on the other
species’ delegate classes.

Chapter 12 Dealing with Inheritance394

ptg26261585

I could use a more precise conditional:

class Bird…
 get plumage() {
 if (this._speciesDelegate instanceof NorwegianBlueParrotDelegate)
 return this._speciesDelegate.plumage;
 else
 return this._plumage || "average";
 }

But I hope that smells as much of decomposing parrot to you as it does to me.
It’s almost never a good idea to use an explicit class check like this.

Another option is to implement the default case on the other delegates.

class Bird…
 get plumage() {
 if (this._speciesDelegate)
 return this._speciesDelegate.plumage;
 else
 return this._plumage || "average";
 }

class EuropeanSwallowDelegate…
 get plumage() {
 return this._bird._plumage || "average";
 }

class AfricanSwallowDelegate…
 get plumage() {
 return this._bird._plumage || "average";
 }

But this duplicates the default method for plumage. And if that’s not bad
enough, I also get some bonus duplication in the constructors to assign the
back-reference.

The solution to the duplication is, naturally, inheritance—I apply Extract
Superclass (375) to the species delegates:

class SpeciesDelegate {
 constructor(data, bird) {
 this._bird = bird;
 }
 get plumage() {
 return this._bird._plumage || "average";
 }

class EuropeanSwallowDelegate extends SpeciesDelegate {

395Replace Subclass with Delegate

ptg26261585

class AfricanSwallowDelegate extends SpeciesDelegate {
 constructor(data, bird) {
 super(data,bird);
 this._numberOfCoconuts = data.numberOfCoconuts;
 }

class NorwegianBlueParrotDelegate extends SpeciesDelegate {
 constructor(data, bird) {
 super(data, bird);
 this._voltage = data.voltage;
 this._isNailed = data.isNailed;
 }

Indeed, now I have a superclass, I can move any default behavior from Bird to
SpeciesDelegate by ensuring there’s always something in the speciesDelegate field.

class Bird…
 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate(data, this);
 case 'AfricanSwallow':
 return new AfricanSwallowDelegate(data, this);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrotDelegate(data, this);
 default: return new SpeciesDelegate(data, this);
 }
 }
 // rest of bird's code...

 get plumage() {return this._speciesDelegate.plumage;}

 get airSpeedVelocity() {return this._speciesDelegate.airSpeedVelocity;}

class SpeciesDelegate…
 get airSpeedVelocity() {return null;}

I like this, as it simplifies the delegating methods on Bird. I can easily see which
behavior is delegated to the species delegate and which stays behind.

Here’s the final state of these classes:

function createBird(data) {
 return new Bird(data);
}

Chapter 12 Dealing with Inheritance396

ptg26261585

class Bird {
 constructor(data) {
 this._name = data.name;
 this._plumage = data.plumage;
 this._speciesDelegate = this.selectSpeciesDelegate(data);
 }
get name() {return this._name;}
get plumage() {return this._speciesDelegate.plumage;}
get airSpeedVelocity() {return this._speciesDelegate.airSpeedVelocity;}

 selectSpeciesDelegate(data) {
 switch(data.type) {
 case 'EuropeanSwallow':
 return new EuropeanSwallowDelegate(data, this);
 case 'AfricanSwallow':
 return new AfricanSwallowDelegate(data, this);
 case 'NorweigianBlueParrot':
 return new NorwegianBlueParrotDelegate(data, this);
 default: return new SpeciesDelegate(data, this);
 }
 }
 // rest of bird's code...
}

class SpeciesDelegate {
 constructor(data, bird) {
 this._bird = bird;
 }
get plumage() {

 return this._bird._plumage || "average";
 }
get airSpeedVelocity() {return null;}

}

class EuropeanSwallowDelegate extends SpeciesDelegate {
get airSpeedVelocity() {return 35;}

}

class AfricanSwallowDelegate extends SpeciesDelegate {
 constructor(data, bird) {
 super(data,bird);
 this._numberOfCoconuts = data.numberOfCoconuts;
 }
get airSpeedVelocity() {

 return 40 - 2 * this._numberOfCoconuts;
 }
}

397Replace Subclass with Delegate

ptg26261585

class NorwegianBlueParrotDelegate extends SpeciesDelegate {
 constructor(data, bird) {
 super(data, bird);
 this._voltage = data.voltage;
 this._isNailed = data.isNailed;
 }
get airSpeedVelocity() {

 return (this._isNailed) ? 0 : 10 + this._voltage / 10;
 }
get plumage() {

 if (this._voltage > 100) return "scorched";
 else return this._bird._plumage || "beautiful";
 }
}

This example replaces the original subclasses with a delegate, but there is still
a very similar inheritance structure in SpeciesDelegate. Have I gained anything from
this refactoring, other than freeing up inheritance on Bird? The species inheritance
is now more tightly scoped, covering just the data and functions that vary due
to the species. Any code that’s the same for all species remains on Bird and its
future subclasses.

I could apply the same idea of creating a superclass delegate to the booking
example earlier. This would allow me to replace those methods on Booking that
have dispatch logic with simple calls to the delegate and letting its inheritance
sort out the dispatch. However, it’s nearly dinner time, so I’ll leave that as an
exercise for the reader.

These examples illustrate that the phrase “Favor object composition over class
inheritance” might better be said as “Favor a judicious mixture of composition
and inheritance over either alone”—but I fear that is not as catchy.

Chapter 12 Dealing with Inheritance398

ptg26261585

Replace Superclass with Delegate
formerly: Replace Inheritance with Delegation

class List {...}
class Stack extends List {...}

class Stack {
 constructor() {
 this._storage = new List();
 }
}
class List {...}

Motivation

In object-oriented programs, inheritance is a powerful and easily available way
to reuse existing functionality. I inherit from some existing class, then override
and add additional features. But subclassing can be done in a way that leads to
confusion and complication.

One of the classic examples of mis-inheritance from the early days of objects
was making a stack be a subclass of list. The idea that led to this was reusing of
list’s data storage and operations to manipulate it. While it’s good to reuse, this
inheritance had a problem: All the operations of the list were present on the in-
terface of the stack, although most of them were not applicable to a stack. A
better approach is to make the list into a field of the stack and delegate the
necessary operations to it.

This is an example of one reason to use Replace Superclass with Delegate—if
functions of the superclass don’t make sense on the subclass, that’s a sign that I
shouldn’t be using inheritance to use the superclass’s functionality.

399Replace Superclass with Delegate

ptg26261585

As well as using all the functions of the superclass, it should also be true that
every instance of the subclass is an instance of the superclass and a valid object
in all cases where we’re using the superclass. If I have a car model class, with
things like name and engine size, I might think I could reuse these features to
represent a physical car, adding functions for VIN number and manufacturing
date. This is a common, and often subtle, modeling mistake which I’ve called the
type-instance homonym [mf-tih].

These are both examples of problems leading to confusion and errors—which
can be easily avoided by replacing inheritance with delegation to a separate object.
Using delegation makes it clear that it is a separate thing—one where only some
of the functions carry over.

Even in cases where the subclass is reasonable modeling, I use Replace Super-
class with Delegate because the relationship between a sub- and superclass is
highly coupled, with the subclass easily broken by changes in the superclass. The
downside is that I need to write a forwarding function for any function that is
the same in the host and in the delegate—but, fortunately, even though such
forwarding functions are boring to write, they are too simple to get wrong.

As a consequence of all this, some people advise avoiding inheritance
entirely—but I don’t agree with that. Provided the appropriate semantic conditions
apply (every method on the supertype applies to the subtype, every instance of
the subtype is an instance of the supertype), inheritance is a simple and effective
mechanism. I can easily apply Replace Superclass with Delegate should the situ-
ation change and inheritance is no longer the best option. So my advice is to
(mostly) use inheritance first, and apply Replace Superclass with Delegate when
(and if) it becomes a problem.

Mechanics

Create a field in the subclass that refers to the superclass object. Initialize
this delegate reference to a new instance.

For each element of the superclass, create a forwarding function in the sub-
class that forwards to the delegate reference. Test after forwarding each
consistent group.

Most of the time you can test after each function that’s forwarded, but, for example,
get/set pairs can only be tested once both have been moved.

When all superclass elements have been overridden with forwarders, remove
the inheritance link.

Chapter 12 Dealing with Inheritance400

ptg26261585

Example

I recently was consulting for an old town’s library of ancient scrolls. They keep
details of their scrolls in a catalog. Each scroll has an ID number and records its
title and list of tags.

class CatalogItem…
 constructor(id, title, tags) {
 this._id = id;
 this._title = title;
 this._tags = tags;
 }

 get id() {return this._id;}
 get title() {return this._title;}
 hasTag(arg) {return this._tags.includes(arg);}

One of the things that scrolls need is regular cleaning. The code for that uses
the catalog item and extends it with the data it needs for cleaning.

class Scroll extends CatalogItem…
 constructor(id, title, tags, dateLastCleaned) {
 super(id, title, tags);
 this._lastCleaned = dateLastCleaned;
 }

 needsCleaning(targetDate) {
 const threshold = this.hasTag("revered") ? 700 : 1500;
 return this.daysSinceLastCleaning(targetDate) > threshold ;
 }
 daysSinceLastCleaning(targetDate) {
 return this._lastCleaned.until(targetDate, ChronoUnit.DAYS);
 }

This is an example of a common modeling error. There is a difference
between the physical scroll and the catalog item. The scroll describing the treat-
ment for the greyscale disease may have several copies, but be just one item in
the catalog.

It many situations, I can get away with an error like this. I can think of the title
and tags as copies of data in the catalog. Should this data never change, I can
get away with this representation. But if I need to update either, I must be careful
to ensure that all copies of the same catalog item are updated correctly.

Even without this issue, I’d still want to change the relationship. Using catalog
item as a superclass to scroll is likely to confuse programmers in the future, and
is thus a poor model to work with.

401Replace Superclass with Delegate

ptg26261585

I begin by creating a property in Scroll that refers to the catalog item, initializing
it with a new instance.

class Scroll extends CatalogItem…
 constructor(id, title, tags, dateLastCleaned) {
 super(id, title, tags);
 this._catalogItem = new CatalogItem(id, title, tags);
 this._lastCleaned = dateLastCleaned;
 }

I create forwarding methods for each element of the superclass that I use on
the subclass.

class Scroll…
 get id() {return this._catalogItem.id;}
 get title() {return this._catalogItem.title;}
 hasTag(aString) {return this._catalogItem.hasTag(aString);}

I remove the inheritance link to the catalog item.

class Scroll extends CatalogItem{
 constructor(id, title, tags, dateLastCleaned) {

super(id, title, tags);
 this._catalogItem = new CatalogItem(id, title, tags);
 this._lastCleaned = dateLastCleaned;
 }

Breaking the inheritance link finishes the basic Replace Superclass with Delegate
refactoring, but there is something more I need to do in this case.

The refactoring shifts the role of the catalog item to that of a component of
scroll; each scroll contains a unique instance of a catalog item. In many cases
where I do this refactoring, this is enough. However, in this situation a better
model is to link the greyscale catalog item to the six scrolls in the library that
are copies of that writing. Doing this is, essentially, Change Value to Reference (256).

There’s a problem that I have to fix, however, before I use Change Value to
Reference (256). In the original inheritance structure, the scroll used the catalog
item’s ID field to store its ID. But if I treat the catalog item as a reference, it needs
to use that ID for the catalog item ID rather than the scroll ID. This means I
need to create an ID field on scroll and use that instead of one in catalog item.
It’s a sort-of move, sort-of split.

class Scroll…
 constructor(id, title, tags, dateLastCleaned) {
 this._id = id;
 this._catalogItem = new CatalogItem(null, title, tags);
 this._lastCleaned = dateLastCleaned;
 }

 get id() {return this._id;}

Chapter 12 Dealing with Inheritance402

ptg26261585

Creating a catalog item with a null ID would usually raise red flags and cause
alarms to sound. But that’s just temporary while I get things into shape. Once
I’ve done that, the scrolls will refer to a shared catalog item with its proper ID.

Currently the scrolls are loaded as part of a load routine.

load routine…
 const scrolls = aDocument
 .map(record => new Scroll(record.id,
 record.catalogData.title,
 record.catalogData.tags,
 LocalDate.parse(record.lastCleaned)));

The first step in Change Value to Reference (256) is finding or creating a repository.
I find there is a repository that I can easily import into the load routine. The
repository supplies catalog items indexed by an ID. My next task is to see how
to get that ID into the constructor of the scroll. Fortunately, it’s present in the
input data and was being ignored as it wasn’t useful when using inheritance.
With that sorted out, I can now use Change Function Declaration (124) to add both
the catalog and the catalog item’s ID to the constructor parameters.

load routine…
 const scrolls = aDocument
 .map(record => new Scroll(record.id,
 record.catalogData.title,
 record.catalogData.tags,
 LocalDate.parse(record.lastCleaned),
 record.catalogData.id,

catalog));

class Scroll…
 constructor(id, title, tags, dateLastCleaned, catalogID, catalog) {
 this._id = id;
 this._catalogItem = new CatalogItem(null, title, tags);
 this._lastCleaned = dateLastCleaned;
 }

I now modify the constructor to use the catalog ID to look up the catalog item
and use it instead of creating a new one.

class Scroll…
 constructor(id, title, tags, dateLastCleaned, catalogID, catalog) {
 this._id = id;
 this._catalogItem = catalog.get(catalogID);
 this._lastCleaned = dateLastCleaned;
 }

I no longer need the title and tags passed into the constructor, so I use Change
Function Declaration (124) to remove them.

403Replace Superclass with Delegate

ptg26261585

load routine…
 const scrolls = aDocument
 .map(record => new Scroll(record.id,

record.catalogData.title,
record.catalogData.tags,

 LocalDate.parse(record.lastCleaned),
 record.catalogData.id,
 catalog));

class Scroll…
 constructor(id, title, tags, dateLastCleaned, catalogID, catalog) {
 this._id = id;
 this._catalogItem = catalog.get(catalogID);
 this._lastCleaned = dateLastCleaned;
 }

Chapter 12 Dealing with Inheritance404

ptg26261585

You can find an online version of this bibliography at https://martinfowler.com/books
/refactoring-bibliography.html. Many of the entries in this bibliography refer to the
“bliki”—a section of martinfowler.com where I provide concise descriptions of
various terms used in software development. While writing this book, I decided
to refer readers to explanations I’d written there rather than incorporate them
into the text of this book.
[Ambler & Sadalage] Scott W. Ambler and Pramod J. Sadalage. Refactoring Databases.

Addison-Wesley, 2006. ISBN 0321293533.

[babel] https://babeljs.io.

[Bazuzi] Jay Bazuzi. “Safely Extract a Method in Any C++ Code.” http://jay.bazuzi.com
/Safely-extract-a-method-in-any-C++-code/.

[Beck SBPP] Kent Beck. Smalltalk Best Practice Patterns. Addison-Wesley, 1997. ISBN
013476904X.

[chai] http://chaijs.com.

[eclipse] http://www.eclipse.org.

[Feathers] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall, 2004. ISBN
0131177052.

[Fields et al.] Jay Fields, Shane Harvie, and Martin Fowler. Refactoring Ruby Edition. Addison-
Wesley, 2009. ISBN 0321603508.

[Ford et al.] Neal Ford, Rebecca Parsons, and Patrick Kua. Building Evolutionary Architectures.
O’Reilly, 2017. ISBN 1491986360.

[Forsgren et al.] Nicole Forsgren, Jez Humble, and Gene Kim. Accelerate: The Science of
Lean Software and DevOps: Building and Scaling High Performing Technology Organizations.
IT Revolution Press, 2018. ISBN 1942788339.

[gof] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 0201634988.

[Harold] Elliotte Rusty Harold. Refactoring HTML. Addison-Wesley, 2008. ISBN 0321503635.

[intellij] https://www.jetbrains.com/idea/.

405

Bibliography

https://martinfowler.com/books/refactoring-bibliography.html
https://martinfowler.com/books/refactoring-bibliography.html
http://martinfowler.com
https://babeljs.io
http://jay.bazuzi.com/Safely-extract-a-method-in-any-C++-code/
http://jay.bazuzi.com/Safely-extract-a-method-in-any-C++-code/
http://chaijs.com
http://www.eclipse.org
https://www.jetbrains.com/idea/

ptg26261585

[Kerievsky] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004. ISBN
0321213351.

[langserver] https://langserver.org.

[maudite] https://en.wikipedia.org/wiki/Unibroue.

[mf-2h] Martin Fowler. “Bliki: TwoHardThings.” https://martinfowler.com/bliki/TwoHardThings.html.

[mf-bba] Martin Fowler. “Bliki: BranchByAbstraction.”
https://martinfowler.com/bliki/BranchByAbstraction.html.

[mf-cp] Martin Fowler. “Collection Pipeline.”
https://martinfowler.com/articles/collection-pipeline/.

[mf-cqs] Martin Fowler. “Bliki: CommandQuerySeparation.” https://martinfowler.com/bliki
/CommandQuerySeparation.html.

[mf-cw] Martin Fowler. “Bliki: ClockWrapper.” https://martinfowler.com/bliki/ClockWrapper.html.

[mf-dsh] Martin Fowler. “Bliki: DesignStaminaHypothesis.” https://martinfowler.com/bliki
/DesignStaminaHypothesis.html.

[mf-evodb] Pramod Sadalage and Martin Fowler. “Evolutionary Database Design.”
https://martinfowler.com/articles/evodb.html.

[mf-fao] Martin Fowler. “Bliki: FunctionAsObject.”
https://martinfowler.com/bliki/FunctionAsObject.html.

[mf-ft] Martin Fowler. “Form Template Method.”
https://refactoring.com/catalog/formTemplateMethod.html.

[mf-lh] Martin Fowler. “Bliki: ListAndHash.” https://martinfowler.com/bliki/ListAndHash.html.

[mf-nm] Martin Fowler. “The New Methodology.”
https://martinfowler.com/articles/newMethodology.html.

[mf-ogs] Martin Fowler. “Bliki: OverloadedGetterSetter.”
https://martinfowler.com/bliki/OverloadedGetterSetter.html.

[mf-pc] Danilo Sato. “Bliki: ParallelChange.” https://martinfowler.com/bliki/ParallelChange.html.

[mf-range] Martin Fowler. “Range.” https://martinfowler.com/eaaDev/Range.html.

[mf-ref-doc] Martin Fowler. “Refactoring Code to Load a Document.” https://martinfowler.com
/articles/refactoring-document-load.html.

[mf-ref-pipe] Martin Fowler. “Refactoring with Loops and Collection Pipelines.”
https://martinfowler.com/articles/refactoring-pipelines.html.

[mf-repos] Martin Fowler. “Repository.” https://martinfowler.com/eaaCatalog/repository.html.

[mf-stc] Martin Fowler. “Bliki: SelfTestingCode.”
https://martinfowler.com/bliki/SelfTestingCode.html.

[mf-tc] Martin Fowler. “Bliki: TestCoverage.” https://martinfowler.com/bliki/TestCoverage.html.

[mf-tdd] Martin Fowler. “Bliki: TestDrivenDevelopment.”
https://martinfowler.com/bliki/TestDrivenDevelopment.html.

[mf-tih] Martin Fowler. “Bliki: TypeInstanceHomonym.”
https://martinfowler.com/bliki/TypeInstanceHomonym.html.

Bibliography406

https://langserver.org
https://en.wikipedia.org/wiki/Unibroue
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/articles/collection-pipeline/
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/ClockWrapper.html
https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://martinfowler.com/articles/evodb.html
https://martinfowler.com/bliki/FunctionAsObject.html
https://refactoring.com/catalog/formTemplateMethod.html
https://martinfowler.com/bliki/ListAndHash.html
https://martinfowler.com/articles/newMethodology.html
https://martinfowler.com/bliki/OverloadedGetterSetter.html
https://martinfowler.com/bliki/ParallelChange.html
https://martinfowler.com/eaaDev/Range.html
https://martinfowler.com/articles/refactoring-document-load.html
https://martinfowler.com/articles/refactoring-document-load.html
https://martinfowler.com/articles/refactoring-pipelines.html
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/bliki/SelfTestingCode.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/TypeInstanceHomonym.html

ptg26261585

[mf-ua] Martin Fowler. “Bliki: UniformAccessPrinciple.”
https://martinfowler.com/bliki/UniformAccessPrinciple.html.

[mf-vo] Martin Fowler. “Bliki: ValueObject.” https://martinfowler.com/bliki/ValueObject.html.

[mf-xp] Martin Fowler. “Bliki: ExtremeProgramming.”
https://martinfowler.com/bliki/ExtremeProgramming.html.

[mf-xunit] Martin Fowler. “Bliki: Xunit.” https://martinfowler.com/bliki/Xunit.html.

[mf-yagni] Martin Fowler. “Bliki: Yagni.” https://martinfowler.com/bliki/Yagni.html.

[mocha] https://mochajs.org.

[Opdyke] William F. Opdyke. “Refactoring Object-Oriented Frameworks.” Doctoral Disser-
tation. University of Illinois at Urbana-Champaign, 1992. http://www.laputan.org/pub/papers
/opdyke-thesis.pdf.

[Parnas] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into Modules.”
In: Communications of the ACM, Volume 15 Issue 12, pp. 1053–1058. Dec. 1972.

[ref.com] https://refactoring.com.

[Wake] William C. Wake. Refactoring Workbook. Addison-Wesley, 2003. ISBN 0321109295.

[wake-swap] Bill Wake. “The Swap Statement Refactoring.” https://www.industriallogic.com
/blog/swap-statement-refactoring/.

407Bibliography

https://martinfowler.com/bliki/UniformAccessPrinciple.html
https://martinfowler.com/bliki/ValueObject.html
https://martinfowler.com/bliki/ExtremeProgramming.html
https://martinfowler.com/bliki/Xunit.html
https://martinfowler.com/bliki/Yagni.html
https://mochajs.org
http://www.laputan.org/pub/papers/opdyke-thesis.pdf
http://www.laputan.org/pub/papers/opdyke-thesis.pdf
http://ref.com
https://refactoring.com
https://www.industriallogic.com/blog/swap-statement-refactoring/
https://www.industriallogic.com/blog/swap-statement-refactoring/

ptg26261585

This page intentionally left blank

ptg26261585

Symbols and Numbers
_ (leading underscore), in function names, 386
== operator (Ruby), 255

A
add method (for collections), 170
Add Parameter. See Change Function Declaration
Agile software methods, 63
Algorithms, substituting, 195–196, 230, 309
Alternative classes with different interfaces,

83
Ambler, Scott, 70
and logical operator, 264–265
Application Programming Interfaces (APIs),

refactoring, 126–128
Architecture

decaying over time, 47
refactoring and, 62–63
testability of, 99

Arrays, sorting, 173
Assertion libraries (Mocha framework), 92
Assertions

applicability of, 302, 304
introducing, 84, 98, 129, 208, 211, 249–250,

302–304
Assignments

removing to parameters, 112
Assumptions, for values, 302
Automated refactoring tools, 131

B
Babel, 37
Bazuzi, Jay, 60
Beck, Kent, 10, 44, 46, 48, 65–67, 71, 77, 86–87,

107
Boundary conditions, 97
Branch by abstraction tactic, 54
Brant, John, 68

Budgeting resources, 64
Bugs

finding, 93, 98
during refactoring, 46, 48
time spent on, 85–86

fixing, 51, 85
introducing into code, 4–5, 59, 129

C
C# language, automated refactorings in, 68
C++ language, refactorings in

for framework development, 67
safe, 60

Calculations
repeated, 149–151
vs. using variables, 248

Chai assertion library, 92
Change Function Declaration, 12–13, 17, 36, 69,

72, 80, 83–84, 124–131, 141–142, 147,
175–176, 184, 214, 216, 218, 222, 245–246,
253, 286, 310, 312, 325–326, 332, 345–346,
351–352, 366, 376, 379, 403

Change Reference to Value, 76, 169, 175, 183, 185,
252–255

Change Signature. See Change Function
Declaration

Change Value to Reference, 175, 256–258, 402
Chrysler Comprehensive Compensation, 65
Classes

abstract, 80
advantages of, 174
alternative, with different interfaces, 83
as data holders, 83
combining functions into, 74, 76–77,

144–148, 274, 281, 290, 293
containing their own tests, 85
context of, 198
creating, 142

409

Index

ptg26261585

Classes (continued)
extracting, 76, 78–80, 82, 182–185, 186, 199,

253, 319, 376
immutable, 330
inlining, 77, 80, 186–188
large, 77, 82, 182
no fields in class definitions of, 354
polymorphic, 126
redundancy in, 82
renaming, 183
vs. transform functions, 144, 149, 153

Clock wrapper, 109
Code

adding functionality to, 46, 50, 53, 56
bad smells in, 71–84

alternative classes with different interfaces,
83

comments, 84
data class, 83
data clumps, 78
divergent change, 76
duplicated code, 47, 72
feature envy, 77, 319
global data, 74–75
insider trading, 82
large class, 82
lazy element, 80
long function, 73–74
long parameter list, 74
loops, 79
message chains, 81
middle man, 81, 192
mutable data, 75–76
mysterious name, 72
primitive obsession, 78–79
refused bequest, 83–84
repeated switches, 79
shotgun surgery, 76
speculative generality, 80
temporary field, 80

bad smells of:
type code, 336

branches of, 57–59
cleaning up, 45, 52, 67
communicating what it is doing, 10, 18, 51,

72–73, 107, 124–125, 137, 260, 263, 267,
302

complexity of, 260
cost of production of, 65
dead, removing, 80, 237, 249–250, 295,

320–321, 345, 347, 366, 383
dependencies in, 324–325, 327, 330
duplicated. See Duplicated code

easy to modify, 4–5, 43, 45, 47, 49
free of side effects, 75, 225, 306–309
improving, 47
internal design of, 4, 49
legacy, 60–61, 70, 133
length of, 33, 42
observable behavior of, 45–46, 59
ownership of, 57
performance of, 14, 20, 64–67
self-testing, 5, 59–60, 63, 85–87, 302
structure of, 23–24, 124, 154–155

adding, 272
changing, 46, 140
losing over time, 47

symmetrical, 373
thought as “done”, 53
understanding, 4, 7, 24, 33, 43, 45, 47–48,

51, 54, 60, 119, 198, 207, 223, 244, 315,
327

Code analysis tools, 315
Code reviews, 54
Collapse Hierarchy, 80, 380
Collecting variables, 240
Collection pipelines, 171, 231–236
Collections

empty, 96
encapsulating, 163, 169, 170–173
immutable, 171
modifier methods for, 170

Combine Functions into Class, 74, 76–77,
144–148, 153, 199, 274, 281, 290, 293

Combine Functions into Transform, 76–77, 144,
149–153, 290, 297–300

Command pattern, 338
Command-query separation principle, 225, 306,

338
Commands (command objects), 337–343

naming, 338
replaced with functions, 344–347

Comments, 84
for assumptions, 302
for dead code, 237
signaling code to extract, 73, 84, 107
turning into names, 125

Compilers
chain of phases in, 155
removing dead code in, 237

Compile-test-commit cycle, 9, 37
Compiling

after each change, 8
checks during, 108

Conditionals
consolidating, 263–265, 267, 270

Index410

ptg26261585

decomposing, 260–262, 315–318
nested, 264–270
replacing with:

guard clauses, 266–271
polymorphism, 39–41, 79, 272–288, 359,

363, 366
reversing, 269–270
signaling code to extract, 74
sliding statements with, 226
symmetrical, 373

Consolidate Conditional Expression, 263–265, 267,
270

Consolidate Duplicate Conditional Fragments.
See Slide Statements

const keyword (JavaScript), 94, 242
Constants

creating, 242
renaming, 138–139

Constructors
manipulating fields in, 331
naming, 334
pulling up body of, 355–358, 376
replacing with factory functions, 39, 334–336,

356, 363–364, 370–371, 382, 385
Continuous Delivery (CD), 60, 64
Continuous Integration (CI), 58–60, 63
Coupling

between sub- and superclasses, 400
reducing, 125
removing, 330

Cunningham, Ward, 7, 51, 67

D
Data

clumps of, 78, 140
derived, 149–153
detecting changes to, 135
duplicated, 249
encapsulating, 132–136
global, 74–75, 258
immutable, 133, 148, 153, 162
mutable, 75–76, 132, 151, 162, 170, 248

Data classes, 83
Data structures, 162–169

accessing, 223
copying, 169
immutable, 247, 252–255
importance of, 207, 244
multiple copies of, 256
nested, 252
read-only proxy for, 168
updating, 167, 256
when to change, 207

Data transformation functions. See Transform
functions

Databases, refactoring, 61, 70
Date.now method, 109
Dead code, removing, 80, 237, 249–250, 295,

320–321, 345, 347, 366, 383
Debugging

making easier, 48, 51
reducing, 5, 49
time spent on, 85
using:

assertions, 302, 304
variables, 119

Decompose Conditional, 260–262, 315–318
Deep copies, 168
Delegates

hiding, 81–82, 189–191, 192, 203
replacing:

subclasses with, 381–398
superclasses with, 399–404

Delegation, 81
unnecessary, 80, 115
vs. inheritance, 382, 389

Dependencies, in code, 324–325, 327, 330
Derived variables, 75, 248–251
Design stamina hypothesis, 50
Divergent change, 76
Duplicated code, 47, 72, 82, 213, 249

for common behavior, 289
for derived data, 149–151
for fields, 353, 376, 378, 380
for methods, 350
for validation checks, 98
in tests, 94
replacing with function calls, 222, 310–313
searching for, 108

E
Eclipse IDE, 68–69
else statement, 267
Emacs text editor

macros in, 69
running tests in, 93

Encapsulate Collection, 163, 169, 170–173
Encapsulate Field. See Encapsulate Variable
Encapsulate Record, 83, 133, 145–146, 162–169,

210, 245
Encapsulate Variable, 75, 132–136, 137–138,

163–164, 166, 171, 175, 193–194, 249, 364
Encapsulation, 81

applicability of, 189
Equality testing, 254–255
equals method, 254

411Index

ptg26261585

equals method (Object), 255
Errors

explicit vs. from a default branch, 40
using assertions for, 302, 304
vs. failures, 98

Evolutionary architecture, 63
execute method, 340
Expand-contract pattern, 61
Explicit methods, replacing parameters with,

314–318
Expressions

complex, 119–122
names for, 119

Extensible Markup Language (XML), 163
Extract Class, 76, 78–80, 82, 182–185, 186, 199,

253, 319, 376
inversed. See Inline Class

Extract Function, 7, 19–20, 24, 69, 72–77, 81,
83–84, 106–114, 119, 126, 128, 130,
145–147, 150–152, 155–156, 167, 181,
214–215, 218–219, 223–224, 228–229, 261,
263–265, 273, 283–284, 290, 292, 296, 299,
302, 304, 322, 325, 328–329, 342, 344–345,
356, 370–372, 376, 388

automated, 9
inversed. See Inline Function
vs. Extract Variable, 122

Extract Method. See Extract Function
Extract Subclass. See Replace Type Code with

Subclasses
Extract Superclass, 82–83, 375–379, 383, 395
Extract Variable, 119–122, 130, 322, 328–329,

345–346
inversed. See Inline Variable
vs. Extract Function, 122

Extreme Programming (XP), 60, 63, 67

F
Factory functions, 275, 282

replacing constructors with, 334–336, 356,
363–364, 370–371, 382, 385

returning superclass, 389
Failures

getting information about, 92
intermittent, 94
vs. errors, 98

Feathers, Michael, 70
Feature envy, 77, 319
Fields

duplicated in subclasses, 353, 376, 378, 380
encapsulating, 133, 364
immutable, 83, 331
moving, 77, 82, 183–184, 188, 207–212

naming, 137
persistent, 137
public, 83, 133
pulling up, 351, 353–354, 376, 378, 380
pushing down, 83, 361, 363, 380
renaming, 72, 244–247, 354
replacing subclasses with, 369–374
self-encapsulating, 176, 193–194, 209
temporary, 80

Fields, Jay, 70
Flag arguments, removing, 74, 314–318
Foote, Brian, 80
Form Template Method, 351
Function as Object pattern, 145
Functional programming, 75
Functions

changing declaration of, 36, 124–131, 253,
310, 312, 325–326, 332, 345–346, 351,
366, 376, 403

combining into:
classes, 74, 76–77, 144–148, 153, 199, 274,

281, 290, 293
transforms, 76–77, 144, 149–153, 290,

297–300
communicating with functions from another

module, 77, 198, 319
creating, 322
decomposing, 73, 196
delegating, 38, 203
deprecated, 126, 128
encapsulating, 337
explicit, replacing parameters with, 315–316
extracting, 7–11, 21, 69, 72–77, 81, 83–84,

106–114, 119, 126, 128, 130, 145–147,
150–152, 155–156, 167, 181, 214–215,
218–219, 223–224, 228–229, 261,
263–265, 273, 283–284, 290, 292, 296,
299, 302, 304, 322, 325, 328–329, 342,
344–345, 356, 370–372, 376, 388

after inlining, 115
factory, 275, 282, 334–336, 356, 363–364,

370–371, 382, 385, 389
inlining, 38, 77, 80–81, 115–118, 126,

128–130, 188, 193–194, 199, 214, 216,
218–220, 290, 294, 320–321, 328–329,
332–333, 345–347

when to avoid, 138
long, 73–74, 77, 106, 260, 338–343

decomposing, 6–22, 51, 178
matching up, 83
moving, 27, 37, 76–83, 108, 145–146, 148,

151, 167, 183–184, 187, 198–206, 323,
338–339, 370, 372, 383, 387, 391–394

Index412

ptg26261585

between classes, 204–206
to the top level, 200–204

naming, 7, 18, 21, 73, 106–107, 124, 130, 151,
222, 260, 284, 320

nested, 22–23, 108, 114, 145, 179, 200–204,
343

parameterizing, 51, 62, 310–313, 351
parameters of:

adding, 127, 128–129, 141–142
changing, 129–131
choosing, 125
flags, 74, 314–318
length of lists of, 73, 74, 319, 324
removing, 126–127, 143, 324–326

referential transparency of, 327, 330
removing, 40
renaming, 21, 57, 69, 72, 80, 84, 125, 125,

127–128, 130, 147, 175–176, 184, 201,
203–204, 214, 216, 218, 221–222,
245–246, 286, 321, 352, 379

replaced with commands, 73, 337–343
replacing:

commands, 344–347
inline code, 108, 222

restricting visibility of, 204
returning a value, 225, 306–309
short, 106–107, 137
side effects in, 225, 306–309
syntax errors in, 37
testing, 145
using instead of variables, 178–179
varying behavior of, 217–221
wrapping, 315, 318
See also Methods

G
Gamma, Eric, 86
Gang of Four, 67, 77
Generalization hierarchy, 278
Getters

naming, 134, 138, 176
returning a copy of data, 135, 171

Git version control system, 9
Global data, 74–75, 258

mutable, 75
Graphical test runners, 93
Guard clauses, 266–271

H
Harold, Elliotte Rusty, 70
Harvey, Shane, 70
hashcode method (Object), 255
Hashmaps, 162

Hide Delegate, 81–82, 189–191, 192
inversed. See Remove Middle Man

Hierarchy
changing, 83–84
collapsing, 80, 380

Hypertext Markup Language (HTML),
refactoring, 70

I
if statement, 267

nested, 264–265
Immutability, 151, 162, 331
Immutable fields, 83
Incremental design, 63
Indirection, needless, 115
Inheritance, 82, 381–382, 385

code logic and, 278–287
indirect, 366–368
planned in advantage, 376
vs. delegation, 382, 389
when to avoid, 399–400

Inline Class, 77, 80, 186–188
inversed. See Extract Class

Inline code, replacing with function calls, 108,
222

Inline Function, 38, 77, 80–81, 115–118, 126,
128–130, 188, 193–194, 199, 214, 216,
218–220, 290, 294, 320–321, 328–329,
332–333, 345–347

inversed. See Extract Function
Inline Method. See Inline Function
Inline Temp. See Inline Variable
Inline Variable, 11, 14, 19–20, 123, 130, 147,

152–153, 181, 293, 328, 372
inversed. See Extract Variable

Input parameters, 242
Insider trading, 82
Instance variables, 82
Integrated Development Environments (IDEs)

refactoring capabilities in, 69
renaming functions automatically in, 127
running tests in, 92

IntelliJ IDEA, 68–69
Interfaces

adjusting after extracting a class, 183
marking as deprecated, 57
published, 57

Intermittent failures, 94
Introduce Assertion, 84, 98, 129, 208, 211,

249–250, 302–304
Introduce Explaining Variable. See Extract

Variable
Introduce Null Object. See Introduce Special Case

413Index

ptg26261585

Introduce Parameter Object, 73–74, 78–79,
140–143, 145, 319

Introduce Special Case, 81, 289–301

J
Java language

accessing collections in, 171
automated refactorings in, 68–69
constructors in, 334
equality testing in, 255
running tests in, 92

JavaScript language
accessing properties in, 389
constants in, 94
constructors in, 364
dynamic typing in, 291
error messages in, 98
exported variables in, 139
function visibility in, 204
getters and setters in, 134
mutability in, 148, 330
nested functions in, 343
no value-based references in, 254
polymorphism in, 278
restricting visibility of variables in,

134
self-references in, 319
shallow copies in, 27
sorting arrays in, 173
subclasses in, 291

JavaScript Object Notation (JSON),
163

Jeffries, Ron, 66
JetBrains, 68
Johnson, Ralph, 67
JUnit framework, 86

K
Kerievsky, Joshua, 70, 269

L
Language servers, 70
Large classes, 82
Law of Demeter, the, 192
Lazy elements, 80
Legacy code, 60–61, 70

encapsulating data in, 133
Libraries, changing gradually, 53–54
List-and-hash data structure, 168
Lists, 163

inheritance and, 399
returning a copy of, 135

Literal objects, 295

Local variables
advantages of, 119
passed as parameters, 108, 110–111
reassigning, 108, 112–114

Lodash library, 168
Long functions, 73–74, 77, 106, 260, 338–343

decomposing, 6–22, 51, 178
Long parameter lists, 73, 74, 319, 324
Loops, 79

repeating, 20
replacing with pipeline, 30, 79, 230, 231–236,

372
signaling code to extract, 74
splitting, 21, 74, 227–230

M
Managers, justifying refactoring for, 54–55
Mercurial tool, 9
Message chains, 81
Methods

duplicated in subclasses, 350
explicit, replacing parameters with,

315–316
getting. See Getters
polymorphic, 116, 126
pulling up, 72, 350–352, 356, 358, 376–380
pushing down, 83, 359–360, 363, 366, 380
setting. See Setters
See also Functions

Middle man, 81
removing, 192–194

Mocha framework, 90–92
Modifiers, separating from queries, 75, 179, 264,

306–309
Modularity, 33, 49, 198
Modules

reducing coupling of, 125
referential transparency of, 327, 330
splitting, 154–159
structuring, 82

Monetary values, storing as integers, 18
Move Field, 77, 82, 183–184, 188, 207–212
Move Function, 27, 37, 76–83, 108, 145–146, 148,

151, 167, 183, 187, 198–206, 323, 338–339,
370, 372, 383, 387, 391–394

Move Method. See Move Function
Move Statements into Function, 213–216
Move Statements to Callers, 117–118, 155, 213,

217–221, 285
Mutable data, 75–76

encapsulating, 170
objects vs. records for, 162

Mysterious names, 72

Index414

ptg26261585

N
Names

communicating what things are doing, 7, 10,
18, 51, 72–73, 107, 124–125, 137, 260,
284

deep design issues and, 72
temporary, 130

new operator, 334
NodeJS console, 91
now method (Date), 109
Null Object. See Introduce Special Case

O
Object-oriented languages

equality testing in, 255
inheritance mechanism in, 381
polymorphism in, 273

Objects
benefits of, 122
creating by creation script, 331
equality testing for, 254–255
for mutable data, 162
initializing, 334
nested, 252
preserving whole, 73–74, 78, 319–323
replacing primitive types with, 79, 174–177,

363, 367
Opdyke, Bill, 67
or logical operator, 264–265
Overloaded getter setter practice, 134

P
Paracelsus, 75
Parallel change pattern, 61
Parameter lists, length of, 73, 74, 319, 324
Parameter objects

introducing, 73–74, 78–79, 140–143, 145,
319

preserving whole, 73–74, 78, 319–323
Parameterize Function, 51, 62, 310–313, 351
Parameterize Method. See Parameterize Function
Parameters

adding, 62, 127, 128–129, 141–142
changing, 129–131
choosing, 125
extracting, 322
naming, 10, 137
removing, 12–13, 126–127, 143
replacing with queries, 74, 324–326
unneeded, 80

Performance
accessing collections and, 171
improving, vs. cost of production, 65

large data structures and, 169
measuring, 65–66
multiple copies of data and, 256
optimizing, 46, 66–67
refactoring and, 14, 20, 64–67, 228

Phases, splitting, 76–77, 83, 154–159
Pipelines, replacing loops with, 30, 230,

231–236, 372
Polymorphism, 34, 38–41, 79

changing methods/classes with, 126
replacing conditionals with, 39–41, 79,

272–288, 363, 366
Preserve Whole Object, 73–74, 78, 319–323
Primitive obsession, 78–79
Primitive types, replacing with objects, 79,

174–177, 363, 367
Productivity

and code base health, 55
and refactoring, 48–50, 56, 67
and running tests, 86, 100
and writing tests, 100

Programming
functional, 75
object-oriented. See Object-oriented languages
productivity of, 48–50

Programs. See Code
protected keyword, 354
Proxies, for data structures, 168
Public fields, 83, 133
Pull Up Constructor Body, 354, 355–358, 376
Pull Up Field, 351, 353–354, 376, 378, 380
Pull Up Method, 72, 350–352, 356, 358, 376–380
Push Down Field, 83, 361, 363, 380
Push Down Method, 83, 359–360, 363, 366, 380

Q
Queries

replaced with parameters, 327–330
replacing:

parameters, 74, 324–326
temps, 178–181, 325

separating from modifiers, 75, 179, 264,
306–309

R
Records

changing, 210
encapsulating, 83, 133, 145–146, 162–169,

210, 245
nested, 165–169

Refactoring
automated tools for, 131
comprehension, 51

415Index

ptg26261585

Refactoring (continued)
definition of, 45–46
embedded into code reviews, 54
exercises to practice, 70
first step in, 5
fitting into workflow, 50, 63–64
impacting software architecture, 62–63
in small steps, 8, 20–21, 44, 46, 59, 102, 245
litter-pickup, 52
long-term, 53
of databases, 61, 70
of legacy code, 60–61, 70
performance and, 14, 20, 64–67, 228
planned vs. opportunistic, 52–53
preparatory, 50, 56
preserving observable behavior of code,

45–46, 59, 67, 98
productivity and, 48–50, 56, 67
reasons to perform, 5, 43–44, 47–50, 56–57
separating from optimization, 64–67, 228
when to avoid, 55
when to do, 50–55, 71–84

Refactoring Browser (Smalltalk), 68
Refactorings

automated, 9, 59, 68–70, 194
catalog of, 101–103
definition of, 45
naming, 101

References
changing to values, 76, 169, 175, 183, 185,

252–255
changing values to, 175, 256–258, 402

Referential transparency, 327, 330
Refused bequest, 83–84
remove method (for collections), 170
Remove Assignments to Parameters. See Split

Variable
Remove Dead Code, 80, 237, 249–250, 295,

320–321, 345, 347, 366, 383
Remove Flag Argument, 74, 314–318
Remove Middle Man, 81, 192–194

inversed. See Hide Delegate
Remove Parameter. See Change Function

Declaration
Remove Setting Method, 75, 83, 171, 173, 253,

255, 331–333
Remove Subclass, 369–374

inversed. See Replace Type Code with Subclasses
Rename Field, 72, 244–247, 354
Rename Function, Rename Method. See Change

Function Declaration
Rename Variable, 72, 137–139
Repeated switches, 79

Repetitive code. See Duplicated code
Replace Command with Function, 344–347
Replace Conditional with Polymorphism, 34, 39,

79, 272–288, 359, 363, 366
Replace Constructor with Factory Function, 39,

334–336, 356, 363–364, 370–371, 382, 385
Replace Constructor with Factory Method. See

Replace Constructor with Factory Function
Replace Data Value with Object. See Replace

Primitive with Object
Replace Derived Variable with Query, 75, 248–251
Replace Function with Command, 73, 337–343
Replace Inheritance with Delegation. See Replace

Superclass with Delegate
Replace Inline Code with Function Call, 108, 222
Replace Loop with Pipeline, 30, 79, 230, 231–236,

372
Replace Method with Method Object. See

Replace Function with Command
Replace Nested Conditional with Guard Clauses,

266–271
Replace Parameter with Explicit Methods. See

Remove Flag Argument
Replace Parameter with Method. See Replace

Parameter with Query
Replace Parameter with Query, 74, 324–326
Replace Primitive with Object, 79, 174–177, 363,

367
Replace Query with Parameter, 327–330
Replace Subclass with Delegate, 81–82, 84,

381–398
Replace Subclass with Fields. See Remove

Subclass
Replace Superclass with Delegate, 81–82, 84, 376,

399–404
Replace Temp with Query, 11, 19, 73, 108, 114,

119, 178–181, 325
Replace Type Code with Class. See Replace

Primitive with Object
Replace Type Code with State/Strategy. See

Replace Type Code with Subclasses
Replace Type Code with Subclasses, 38, 79, 82,

362–368
inversed. See Remove Subclass

Repository objects, 257
Resharper plug-in, 68
Responsibility, shifting, 324, 327–328
Restructuring, 46
Roberts, Don, 50, 68
Ruby language

equality testing in, 255
refactoring in, 70

Rule of three, the, 50

Index416

ptg26261585

S
Sadalage, Pramod, 61, 70
Self Delegation tactic, 77
Self-Encapsulate Field. See Encapsulate Variable
Self-encapsulation, 133, 364
Self-references, 319
Separate Query from Modifier, 75, 179, 264,

306–309
Setters

naming, 134, 176
removing, 75, 83, 171, 173, 253, 255,

331–333
returning a copy of data, 135–136

Shallow copies, 27
Shotgun surgery, 76
Side effects, 75, 225, 306–309
Simple design, 63
Slide Statements, 18–20, 72, 75, 112, 210, 214,

217, 223–226, 229, 356–357
See also Swap Statement

Smalltalk, 67
Refactoring Browser, 68
subclass responsibility errors in, 352
using short methods in, 107

Smells. See Code, bad smells in
Software. See Code
Special cases, introducing, 81, 289–301
Speculative generality, 80
Split Loop, 18, 20, 74, 227–230
Split Phase, 24, 76–77, 83, 154–159
Split Temp. See Split Variable
Split Variable, 75, 108, 112, 114, 225, 240–243,

249–250
State design pattern, 382
Statements

moving:
into functions, 213–216
to callers, 117–118, 155, 213, 217–221, 285

sliding, 72, 75, 112, 210, 214, 217, 223–226,
229, 356–357

Static typing, 127
Strategy design pattern, 77, 382
Subclass responsibility errors, 352
Subclasses

creating, 38–39, 282
duplicated code in, 72
overriding methods in, 116, 282
pulling up:

fields, 353–354, 376, 378, 380
methods, 350–352, 358, 376–380

refusing implementations, 84
replacing:

type code with, 79, 82, 362–368

with delegates, 81–82, 84, 381–398
with fields, 369–374

Substitute Algorithm, 195–196, 230, 309
Superclasses

defining constructors for, 356
extracting, 82–83, 375–379, 383, 395
pushing down:

fields, 361, 363, 380
methods, 359–360, 363, 366, 380

replacing with delegates, 81–82, 84, 376,
399–404

role of, 278
with interfaces not supported in subclasses,

84
Swap Statement, 226

See also Slide Statements
Switches

repeated, 79
signaling code to extract, 74

System clock, calls to, 109

T
Teardown, 95
Telephone numbers

adding logic to, 174
behavior of, separated into a class,

183–185
formatting, 125
programming for, 253–255

Temporary fields, 80
Temporary variables (temps), 16

replacing with queries, 73, 108, 114, 119,
178–181, 325

Test coverage analysis, 99
Test-Driven Development, 87
Tests, 85–100

adding to legacy code, 60
affecting productivity, 86, 100
choosing how many to write, 93, 98, 100
duplicated code in, 94
evolving over time, 99
failing, 21

intermittently, 94
where they should, 91–92, 99

for boundary conditions, 97
for setters, 95
importance of, 5
in IDE, 92
nondeterministic, 94, 109
running:

after each change, 8
frequently, 86, 92

self-checking, 5, 59–60, 63, 85–87, 302

417Index

ptg26261585

Tests (continued)
teardown between, 95
unit, 99, 302

this keyword (JavaScript), 319
Thomas, Dave, 85
Transform functions, 76–77, 149–153

vs. classes, 144, 149, 153
Trunk-Based Development, 58
Type code

passing as a literal string, 336
replacing with:

classes, 174–177
subclasses, 79, 82, 362–368

Type-instance homonym, 400

U
undefined property (JavaScript), 389
Underscore (_), in function names, 386
Understanding code, 4, 7, 24, 33, 43, 45, 47–48,

51, 54, 119, 223
and flag arguments, 315
growing over time, 198, 327
importance of data structures for, 207,

244
in legacy systems, 60
removing dead code for, 237

Uniform Access Principle (UAP), 147
Unit tests, 99, 302

V
Validation checks, 98
Value objects, 141, 185, 252–255
Values

changing references to, 76, 169, 175, 183,
185, 252–255

changing to references, 175, 256–258, 402
encapsulating, 135
free of side effects, 225, 306–309
immutable, 162
self-references to, 319

Variables, 240
bundling in a class, 82
declared as input parameters, 242
declaring/initializing, 21, 223, 241
derived, 75, 248–251

encapsulating, 75, 132–136, 137–138,
163–164, 166, 171, 175, 249

extracting, 119–122, 130, 322, 328–329,
345–346

global, 133
highlighting in text editors, 241
immutable, 120, 123, 241–242
inlining, 11, 14, 19, 21, 123, 130, 147,

152–153, 181, 293, 328, 372
instance, 82
local, 108, 110–114
naming, 119, 137–138
out-of-scope, 108
passed by value, 108, 112–114
references to, 137–138
removing, 10–14
renaming, 9–10, 16, 22, 51, 69, 72, 134,

137–139, 241
replacing with:

declared functions, 16–18
queries, 75, 248–251

restricting visibility of, 134
scope of, 7–8, 11
splitting, 75, 108, 114, 225, 240–243, 249–250
temporary, 16
useful for debugging, 119

Version control systems
committing:

after each refactoring, 9
separately for refactorings and feature

additions, 53
retrieving deleted code in, 237
working on branches in, 57–59

Visitor design pattern, 77
Visual Studio, refactoring in, 68

W
Wake, Bill, 70
Wrapping functions, 315, 318

X
XML (Extensible Markup Language), 163

Y
Yagni ("you aren't going to need it"), 63–64

Index418

ptg26261585

This page intentionally left blank

ptg26261585

V I D E O T R A I N I N G F O R T H E I T P R O F E S S I O N A L

*Discount code VIDBOB confers a 50% discount off the list price of eligible titles purchased on informit.com. Eligible titles include most full-course video titles. Book + eBook bundles,
book/eBook + video bundles, individual video lessons, Rough Cuts, Safari Books Online, non-discountable titles, titles on promotion with our retail partners, and any title featured
as eBook Deal of the Day or Video Deal of the Week is not eligible for discount. Discount may not be combined with any other offer and is not redeemable for cash. Offer subject to change.

Learn more, browse our store, and watch free, sample lessons at
i n f o r m i t . co m / v i d e o

Save 50%* off the list price of video courses with discount code VIDBOB

LEARN QUICKLY
Learn a new technology in just hours. Video training can teach more in
less time, and material is generally easier to absorb and remember.

WATCH AND LEARN
Instructors demonstrate concepts so you see technology in action.

TEST YOURSELF
Our Complete Video Courses offer self-assessment quizzes throughout.

CONVENIENT
Most videos are streaming with an option to download lessons for offline viewing.

Photo by marvent/Shutterstock

PITC_Video_Ad_7375x9.125.indd 1 7/18/18 5:23 PM

http://informit.com
http://informit.com/video

ptg26261585

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

•	� Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

•	 Download available product updates.
•	 Access bonus material if available.*
•	� Check the box to hear from us and receive exclusive offers on new

editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

•	 Shop our books, eBooks, software, and video training
•	 Take advantage of our special offers and promotions (informit.com/promotions)
•	 Sign up for special offers and content newsletter (informit.com/newsletters)
•	 Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

reg_informit_ad_7375x9125_JAN2018_CMYK.indd 1 7/17/18 2:45 PM

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community
http://InformIT.com

ptg26261585

Common RefactoringsSmell

Change Function Declaration (124), Move Function
(198), Extract Superclass (375)

Alternative Classes with
Different Interfaces (83)

Extract Function (106), Change Function Declaration
(124), Introduce Assertion (302)

Comments (84)

Encapsulate Record (162), Remove Setting Method
(331), Move Function (198), Extract Function (106),
Split Phase (154)

Data Class (83)

Extract Class (182), Introduce Parameter Object (140),
Preserve Whole Object (319)

Data Clumps (78)

Split Phase (154), Move Function (198), Extract
Function (106), Extract Class (182)

Divergent Change (76)

Extract Function (106), Slide Statements (223), Pull
Up Method (350)

Duplicated Code (72)

Move Function (198), Extract Function (106)Feature Envy (77)

Encapsulate Variable (132)Global Data (74)

Move Function (198), Move Field (207), Hide Delegate
(189), Replace Subclass with Delegate (381), Replace
Superclass with Delegate (399)

Insider Trading (82)

Extract Class (182), Extract Superclass (375), Replace
Type Code with Subclasses (362)

Large Class (82)

Inline Function (115), Inline Class (186), Collapse
Hierarchy (380)

Lazy Element (80)

Extract Function (106), Replace Temp with Query
(178), Introduce Parameter Object (140), Preserve
Whole Object (319), Replace Function with Command
(337), Decompose Conditional (260), Replace
Conditional with Polymorphism (272), Split Loop (227)

Long Function (73)

Replace Parameter with Query (324), Preserve Whole
Object (319), Introduce Parameter Object (140),
Remove Flag Argument (314), Combine Functions into
Class (144)

Long Parameter List (74)

Smells

ptg26261585

Common RefactoringsSmell

Replace Loop with Pipeline (231)Loops (79)

Hide Delegate (189), Extract Function (106), Move
Function (198)

Message Chains (81)

Remove Middle Man (192), Inline Function (115),
Replace Superclass with Delegate (399), Replace
Subclass with Delegate (381)

Middle Man (81)

Encapsulate Variable (132), Split Variable (240), Slide
Statements (223), Extract Function (106), Separate
Query from Modifier (306), Remove Setting Method
(331), Replace Derived Variable with Query (248),
Combine Functions into Class (144), Combine
Functions into Transform (149), Change Reference to
Value (252)

Mutable Data (75)

Change Function Declaration (124), Rename Variable
(137), Rename Field (244)

Mysterious Name (72)

Replace Primitive with Object (174), Replace Type
Code with Subclasses (362), Replace Conditional with
Polymorphism (272), Extract Class (182), Introduce
Parameter Object (140)

Primitive Obsession (78)

Push Down Method (359), Push Down Field (361),
Replace Subclass with Delegate (381), Replace
Superclass with Delegate (399)

Refused Bequest (83)

Replace Conditional with Polymorphism (272)Repeated Switches (79)

Move Function (198), Move Field (207), Combine
Functions into Class (144), Combine Functions into
Transform (149), Split Phase (154), Inline Function
(115), Inline Class (186)

Shotgun Surgery (76)

Collapse Hierarchy (380), Inline Function (115), Inline
Class (186), Change Function Declaration (124),
Remove Dead Code (237)

Speculative Generality (80)

Extract Class (182), Move Function (198), Introduce
Special Case (289)

Temporary Field (80)

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Foreword to the First Edition
	Preface
	Chapter 1: Refactoring: A First Example
	The Starting Point
	Comments on the Starting Program
	The First Step in Refactoring
	Decomposing the statement Function
	Status: Lots of Nested Functions
	Splitting the Phases of Calculation and Formatting
	Status: Separated into Two Files (and Phases)
	Reorganizing the Calculations by Type
	Status: Creating the Data with the Polymorphic Calculator
	Final Thoughts

	Chapter 2: Principles in Refactoring
	Defining Refactoring
	The Two Hats
	Why Should We Refactor?
	When Should We Refactor?
	Problems with Refactoring
	Refactoring, Architecture, and Yagni
	Refactoring and the Wider Software Development Process
	Refactoring and Performance
	Where Did Refactoring Come From?
	Automated Refactorings
	Going Further

	Chapter 3: Bad Smells in Code
	Mysterious Name
	Duplicated Code
	Long Function
	Long Parameter List
	Global Data
	Mutable Data
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Repeated Switches
	Loops
	Lazy Element
	Speculative Generality
	Temporary Field
	Message Chains
	Middle Man
	Insider Trading
	Large Class
	Alternative Classes with Different Interfaces
	Data Class
	Refused Bequest
	Comments

	Chapter 4: Building Tests
	The Value of Self-Testing Code
	Sample Code to Test
	A First Test
	Add Another Test
	Modifying the Fixture
	Probing the Boundaries
	Much More Than This

	Chapter 5: Introducing the Catalog
	Format of the Refactorings
	The Choice of Refactorings

	Chapter 6: A First Set of Refactorings
	Extract Function
	Inline Function
	Extract Variable
	Inline Variable
	Change Function Declaration
	Encapsulate Variable
	Rename Variable
	Introduce Parameter Object
	Combine Functions into Class
	Combine Functions into Transform
	Split Phase

	Chapter 7: Encapsulation
	Encapsulate Record
	Encapsulate Collection
	Replace Primitive with Object
	Replace Temp with Query
	Extract Class
	Inline Class
	Hide Delegate
	Remove Middle Man
	Substitute Algorithm

	Chapter 8: Moving Features
	Move Function
	Move Field
	Move Statements into Function
	Move Statements to Callers
	Replace Inline Code with Function Call
	Slide Statements
	Split Loop
	Replace Loop with Pipeline
	Remove Dead Code

	Chapter 9: Organizing Data
	Split Variable
	Rename Field
	Replace Derived Variable with Query
	Change Reference to Value
	Change Value to Reference

	Chapter 10: Simplifying Conditional Logic
	Decompose Conditional
	Consolidate Conditional Expression
	Replace Nested Conditional with Guard Clauses
	Replace Conditional with Polymorphism
	Introduce Special Case
	Introduce Assertion

	Chapter 11: Refactoring APIs
	Separate Query from Modifier
	Parameterize Function
	Remove Flag Argument
	Preserve Whole Object
	Replace Parameter with Query
	Replace Query with Parameter
	Remove Setting Method
	Replace Constructor with Factory Function
	Replace Function with Command
	Replace Command with Function

	Chapter 12: Dealing with Inheritance
	Pull Up Method
	Pull Up Field
	Pull Up Constructor Body
	Push Down Method
	Push Down Field
	Replace Type Code with Subclasses
	Remove Subclass
	Extract Superclass
	Collapse Hierarchy
	Replace Subclass with Delegate
	Replace Superclass with Delegate

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

