“Any fool can write code that a computer can understand. ygle FO

Good programmers write code that humans can understand.”
—M. Fowler (1999) < /L/l
4
(@)
I @

R EFACTORING

Martin Fowler

with contributions by

Kent Beck

SEcoND EDITION

I

List of Refactorings

Change Function Declaration (124)

Change Reference to Value (252)

Change Value to Reference (256)

Collapse Hierarchy (380)

Combine Functions into Class (144)

Combine Functions into Transform
(149)

Consolidate Conditional Expression
(263)

Decompose Conditional (260)

Encapsulate Collection (170)

Encapsulate Record (162)

Encapsulate Variable (132)

Extract Class (182)

Extract Function (106)

Extract Superclass (375)

Extract Variable (119)

Hide Delegate (189)

Inline Class (186)

Inline Function (115)

Inline Variable (123)

Introduce Assertion (302)

Introduce Parameter Object (140)

Introduce Special Case (289)

Move Field (207)

Move Function (198)

Move Statements into Function (213)

Move Statements to Callers (217)

Parameterize Function (310)

Preserve Whole Object (319)

Pull Up Constructor Body (355)

Pull Up Field (353)

Pull Up Method (350)

Push Down Field (361)

Push Down Method (359)

Remove Dead Code (237)

Remove Flag Argument (314)

Remove Middle Man (192)

Remove Setting Method (331)

Remove Subclass (369)

Rename Field (244)

Rename Variable (137)

Replace Command with Function
(344)

Replace Conditional with
Polymorphism (272)

Replace Constructor with Factory
Function (334)

Replace Derived Variable with Query
(248)

Replace Function with Command
(337)

Replace Inline Code with Function
Call (222)

Replace Loop with Pipeline (231)

Replace Nested Conditional with
Guard Clauses (266)

Replace Parameter with Query (324)

Replace Primitive with Object (174)

Replace Query with Parameter (327)

Replace Subclass with Delegate (381)

Replace Superclass with Delegate
(399)

Replace Temp with Query (178)

Replace Type Code with Subclasses
(362)

Separate Query from Modifier (306)

Slide Statements (223)

Split Loop (227)

Split Phase (154)

Split Variable (240)

Substitute Algorithm (195)

Refactoring

Second Edition

Pearson Addison-Wesley
Signature Series

ENTERPRISE
INTEGRATION

CONTINUOUS | ENT
PATTERNS

INTEGRATION APPLICATION
1"\”‘.'“5 TECTURE

CONTINUOUS
DELIVERY

Vb e i) e

Visit informit.com/awss for a complete list of available publications.

he Pearson Addison-Wesley Signature Series provides readers

with practical and authoritative information on the latest trends in
modern technology for computer professionals. The series is based on
one simple premise: great books come from great authors.

Books in the Martin Fowler Signature Series are personally chosen

by Fowler, and his signature ensures that he has worked closely with
authors to define topic coverage, book scope, critical content, and
overall uniqueness. The expert signatures also symbolize a promise to
our readers: you are reading a future classic.

You ~
£ ¥ &

Make sure to connect with us!
informit.com/socialconnect

@ Pearson =
Addison-Wesley Informit.com Safari

http://informit.com/awss
http://informit.com/socialconnect
http://informit.com/awss

Refactoring

Improving the Design of Existing Code

Second Edition

Martin Fowler
with contributions by Kent Beck

vvAddison-Wesley

Boston ® Columbus ® New York ¢ San Francisco ¢ Amsterdam ¢ Cape Town
Dubai ¢ London ® Madrid ¢ Milan ¢ Munich e Paris ¢ Montreal ¢ Toronto ® Delhi ¢ Mexico City
Sao Paulo ¢ Sydney * Hong Kong Seoul ® Singapore ® Taipei ® Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018950015

Copyright © 2019 Pearson Education, Inc.

Cover photo: Waldo-Hancock Bridge & Penobscot Narrows Bridge by Martin Fowler
Lightbulb graphic: Irina Adamovich/Shutterstock

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-475759-9
ISBN-10: 0-13-475759-9

1 18

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

For Cindy
—Martin

This page intentionally left blank

Contents

Foreword to the First Editionuceeeeenrenienienieininrenreieieeeinnennseenes xi
1O xiii
Chapter 1: Refactoring: A First Exampleccccovviiiniiiniinniinniiinninnniiinnnecnne, 1
The Starting Point ... 1
Comments on the Starting Programcccoceciiiiiiiinn 3
The First Step in Refactoring ..o, 5
Decomposing the statement Function ... 6
Status: Lots of Nested Functionsccccccoiviiiiiiiiiiniiniiicie, 22
Splitting the Phases of Calculation and Formattingcccccocoeii. 24
Status: Separated into Two Files (and Phases)cccccoecerveinncennenne. 31
Reorganizing the Calculations by Typeccccoviiiiiiiiiiiiiiii 34
Status: Creating the Data with the Polymorphic Calculator 41
Final Thoughts ..o 43
Chapter 2: Principles in Refactoringcccccovvivviiiiniiiiniiinniinniiiiniinnicnnneenne, 45
Defining Refactoring ..o, 45
The Two Hats ..c.oooiiiiii e 46
Why Should We Refactor?ccccooiiiiiiiiiiiiiiiiicicccces 47
When Should We Refactor?ccccoovviiiiiiiiiiiiiiii 50
Problems with Refactoringccccocviiiiiniiniiii 55
Refactoring, Architecture, and Yagniccccovviiiiiiiiiiniiiiice, 62
Refactoring and the Wider Software Development Process 63
Refactoring and Performancecccccovviiininiinininiiii 64
Where Did Refactoring Come From?ccccooveiiiiiiiiiniiii, 67
Automated Refactorings ..o, 68
Going Further ... 70

vii

viii CONTENTS

Chapter 3: Bad Smells in Codeccooeuiiiiiiiiiiiiiiiiiiiiiiiecciecceecceeece 71
Mysterious Nameccccooiiiiiiiiiii 72
Duplicated Codecccooiiiiiiiiiiiiiii 72
Long FUNCHON ...cooiiiiiiiiiicic 73
Long Parameter List ..o 74
Global Dataccooviiiiiiiii 74
Mutable Data ..o 75
Divergent Change ..o 76
ShOtgUN SUIETY ...oooviiiiiiiiiiiiiiiic e 76
Feature ENVYy ... 77
Data CIUMPS ...oooviiiiiiiiiiii 78
Primitive ObSeSSIONcooveiiiiiiiiiiiiiiciicccc 78
Repeated Switchesccooiiiiiiiiiiiiiiiii, 79
LIOOPS rietieitiiitcet et 79
Lazy Element ..o 80
Speculative Generalityccooevviiiiiiiiiiiii 80
Temporary Field ... 80
Message Chains ..o 81
Middle Man ..o 81
Insider Tradingccooooiiiiiiii 82
Large CIassccoouioiiiiiiiiiiiiiiieec e 82
Alternative Classes with Different Interfaces ..o, 83
Data Classcccoviiiiiiiiiiiiiiii 83
Refused Bequest ..o 83
COMMENTS ..viiviiiiiiiiiicc e 84

Chapter 4: Building Testscocueiiiiiiiiniiiiiiiiiiiiiicciincctecce e 85
The Value of Self-Testing Codecccccovviviiiiiiiiniiiiiii 85
Sample Code to Test ..o 87
A TIrst Test oo 90
Add Another Test ..o 93
Modifying the Fixture ..o 95
Probing the Boundariescccocoiiiiiiiiiiiiiiiiiiicecc 96
Much More Than This ..o 99

Chapter 5: Introducing the Catalogccccueeeeuiriiniiiiiniiiiiniiiiiecciieccnee, 101
Format of the Refactoringsc.ccocooviiviiiiiiiiniii, 101

The Choice of Refactorings ..o, 102

CONTENTS

Chapter 6: A First Set of Refactoringsccoccovvuvvvvuiiniiiniiinniiinnnecnniiennneenne, 105
Extract Function ... 106
Inline FUNCHONcccooiiiiiiiiiiiie 115
Extract Variable ..., 119
Inline Variable ... 123
Change Function Declarationcccocociiviiiiiiiiiiniiiii 124
Encapsulate Variableccccocoiiiiiiiiiii 132
Rename Variable ... 137
Introduce Parameter Objectcccccooiiiiiiiiiiniiiiiiiicc, 140
Combine Functions into Classccccoiiiiiiiiiiiiiii, 144
Combine Functions into Transformcccceceeiviiiiiiiiniinnin, 149
SPlit PRASE ..viiiiiiiiiiiiiiiccc e 154
Chapter 7: Encapsulationcceiiiiiiniiiiininiiiiniiiiniicicecccneccnnne, 161
Encapsulate Recordccccooiiiiiiiiiiiiiiiiiiiii 162
Encapsulate Collectionccccoccoiiiiiiiiiiiiiiniii, 170
Replace Primitive with Objectccccooiiiiiniiiiii, 174
Replace Temp with QUerycccooviiiiiiiiiiiiiiic, 178
Extract Classcccciiiiiiiiiiiiiiiiii 182
ININE ClaSS .oouiiiiiiiiiiiiii e 186
Hide Delegatecccccooiiiiiiiiiiiiiiiiiiceccc e 189
Remove Middle Mancccooiiiiiiiiiiiiiiiiiiii 192
Substitute Algorithm ... 195
Chapter 8: Moving Featurescccoueiiiiiiiiniiiiiniiiiiiieiciincceeccee e, 197
Move FUNCHON ... 198
Move Fieldcccoiiiiiiiiiiiii 207
Move Statements into Function ..., 213
Move Statements to Callersccocooiiiiininiiiiiinii, 217
Replace Inline Code with Function Callccccccociiiiiniinninnnn, 222
Slide Statementscccociiiiiiiiiiiiiiii 223
SPLit LOOP ittt 227
Replace Loop with Pipelineccccocoiiiiiiiiiiii, 231
Remove Dead Codeccoviiiiiiiiiiiiiiiiiiiiii 237
Chapter 9: Organizing Dataccccooviiiiiiiiiiniiiiniiiiiiccincceecce e, 239
Split Variable ... 240
Rename Field ... 244

Replace Derived Variable with Querycccoccoooviiiiiiii, 248

CONTENTS

Change Reference to Value ..o 252
Change Value to Referencecccocviviiiiiinininiiiiiii, 256
Chapter 10: Simplifying Conditional LOGICcccccevvverviniineiniiniinniiiiennnenne. 259
Decompose Conditionalccccooiviiiiiiiniiiiiii 260
Consolidate Conditional EXpressionccceceviiiiiiiiniiniinincnnn, 263
Replace Nested Conditional with Guard Clausesccccecveiinnnninn. 266
Replace Conditional with Polymorphismccccccccooiiiiiinnnnn 272
Introduce Special Caseccccecviiiiiiiiiiiiiiiii 289
Introduce ASSertioncccoceevviviiiiiiiiiiiii 302
Chapter 11: Refactoring APIscouviiiiiiiiniiiiniinniiiiiiniineenniecneee 305
Separate Query from Modifiercccocooviviviiiiiiii 306
Parameterize FUNCHONccooiiiiiiii 310
Remove Flag Argumentccccoociiiiiiiiiiiiiiccce, 314
Preserve Whole Objectcccooviiiiiiiiiiiiiiiis 319
Replace Parameter with Query ... 324
Replace Query with Parametercccocooooiiiiiiiiii 327
Remove Setting Methodcccccooiiiiiiiiiiiii 331
Replace Constructor with Factory Function ... 334
Replace Function with Commandcccccooviiiiiiiiiiiiii, 337
Replace Command with Function ..., 344
Chapter 12: Dealing with Inheritancecccccoovieiiinniinniinniinniininnnene, 349
Pull Up Methodccociiiiiiiiiiiiiiiiis 350
Pull Up Fieldcccooiiiiiiiiiiiiiiiii 353
Pull Up Constructor Bodycccoeiiiiiiiiiiiiii, 355
Push Down Method ..o 359
Push Down Field ..o 361
Replace Type Code with Subclassescccooevvviiiiiiiiiiiini, 362
Remove Subclass ..o 369
Extract SUperclasscccocevviiiiiiiiniiiiiiiii 375
Collapse Hierarchy ..o, 380
Replace Subclass with Delegatecccooveiiiiiiiiii 381
Replace Superclass with Delegateccocevviiiiniiiiiiiinii 399
Biblioraphycucovvviiiniiniiiiniiiiiiiniiniciene st 405

Foreword to the First Edition

“Refactoring” was conceived in Smalltalk circles, but it wasn't long before it found
its way into other programming language camps. Because refactoring is integral
to framework development, the term comes up quickly when “frameworkers” talk
about their craft. It comes up when they refine their class hierarchies and when
they rave about how many lines of code they were able to delete. Frameworkers
know that a framework won't be right the first time around—it must evolve as
they gain experience. They also know that the code will be read and modified
more frequently than it will be written. The key to keeping code readable and
modifiable is refactoring—for frameworks, in particular, but also for software in
general.

So, what's the problem? Simply this: Refactoring is risky. It requires changes
to working code that can introduce subtle bugs. Refactoring, if not done properly,
can set you back days, even weeks. And refactoring becomes riskier when prac-
ticed informally or ad hoc. You start digging in the code. Soon you discover new
opportunities for change, and you dig deeper. The more you dig, the more stuff
you turn up. . .and the more changes you make. Eventually you dig yourself into
a hole you can't get out of. To avoid digging your own grave, refactoring must
be done systematically. When my coauthors and I wrote Design Patterns, we
mentioned that design patterns provide targets for refactorings. However, identi-
fying the target is only one part of the problem; transforming your code so that
you get there is another challenge.

Martin Fowler and the contributing authors make an invaluable contribution
to object-oriented software development by shedding light on the refactoring
process. This book explains the principles and best practices of refactoring, and
points out when and where you should start digging in your code to improve it.
At the book’s core is a comprehensive catalog of refactorings. Each refactoring
describes the motivation and mechanics of a proven code transformation. Some
of the refactorings, such as Extract Method or Move Field, may seem obvious.

But don't be fooled. Understanding the mechanics of such refactorings is the
key to refactoring in a disciplined way. The refactorings in this book will help
you change your code one small step at a time, thus reducing the risks of evolving

xi

xii

FOREWORD TO THE FIRST EDITION

your design. You will quickly add these refactorings and their names to your
development vocabulary.

My first experience with disciplined, “one step at a time” refactoring was when
I was pair-programming at 30,000 feet with Kent Beck. He made sure that we
applied refactorings from this book’s catalog one step at a time. I was amazed at
how well this practice worked. Not only did my confidence in the resulting code
increase, I also felt less stressed. I highly recommend you try these refactorings:
You and your code will feel much better for it.

— Erich Gamma, Object Technology International, Inc.
January 1999

Preface

Once upon a time, a consultant made a visit to a development project in order
to look at some of the code that had been written. As he wandered through the
class hierarchy at the center of the system, the consultant found it rather messy.
The higher-level classes made certain assumptions about how the classes would
work—assumptions that were embodied in inherited code. That code didn't suit
all the subclasses, however, and was overridden quite heavily. Slight modifications
to the superclass would have greatly reduced the need to override it. In other
places, an intention of the superclass had not been properly understood, and
behavior present in the superclass was duplicated. In yet other places, several
subclasses did the same thing with code that could clearly be moved up the
hierarchy.

The consultant recommended to the project management that the code be
looked at and cleaned up—but the project management wasn't enthusiastic.
The code seemed to work and there were considerable schedule pressures. The
managers said they would get around to it at some later point.

The consultant had also shown what was going on to the programmers working
on the hierarchy. The programmers were keen and saw the problem. They knew
that it wasn't really their fault; sometimes, a new pair of eyes is needed to spot
the problem. So the programmers spent a day or two cleaning up the hierarchy.
When finished, they had removed half the code in the hierarchy without reducing
its functionality. They were pleased with the result and found that it became
quicker and easier both to add new classes and to use the classes in the rest of
the system.

The project management was not pleased. Schedules were tight and there was
a lot of work to do. These two programmers had spent two days doing work that
added nothing to the many features the system had to deliver in a few months’
time. The old code had worked just fine. Yes, the design was a bit more “pure”
and a bit more “clean.” But the project had to ship code that worked, not code
that would please an academic. The consultant suggested that a similar cleanup
should be done on other central parts of the system, which might halt the project

xiii

Xiv

PREFACE

for a week or two. All this was to make the code look better, not to make it do
anything it didn’t already do.

How do you feel about this story? Do you think the consultant was right to
suggest further cleanup? Or do you follow that old engineering adage, “if it works,
don't fix it"?

I must admit to some bias here. I was that consultant. Six months later, the
project failed, in large part because the code was too complex to debug or tune
to acceptable performance.

The consultant Kent Beck was brought in to restart the project—an exercise
that involved rewriting almost the whole system from scratch. He did several
things differently, but one of the most important changes was to insist on contin-
uous cleaning up of the code using refactoring. The improved effectiveness of
the team, and the role refactoring played, is what inspired me to write the first
edition of this book—so I could pass on the knowledge that Kent and others have
acquired by using refactoring to improve the quality of software.

Since then, refactoring has become an accepted part of the vocabulary of pro-
gramming. And the original book has stood up rather well. However, eighteen
years is an old age for a programming book, so I felt it was time to go back and
rework it. Doing this had me rewrite pretty much every page in the book. But,
in a sense, very little has changed. The essence of refactoring is the same; most
of the key refactorings remain essentially the same. But I do hope that the
rewriting will help more people learn how to do refactoring effectively.

What Is Refactoring?

Refactoring is the process of changing a software system in a way that does not
alter the external behavior of the code yet improves its internal structure. It is a
disciplined way to clean up code that minimizes the chances of introducing bugs.
In essence, when you refactor, you are improving the design of the code after it
has been written.

“Improving the design after it has been written.” That's an odd turn of phrase.
For much of the history of software development, most people believed that we
design first, and only when done with design should we code. Over time, the
code will be modified, and the integrity of the system—its structure according to
that design—gradually fades. The code slowly sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring, we can take a
bad, even chaotic, design and rework it into well-structured code. Each step is
simple—even simplistic. I move a field from one class to another, pull some code
out of a method to make it into its own method, or push some code up or down
a hierarchy. Yet the cumulative effect of these small changes can radically improve
the design. It is the exact reverse of the notion of software decay.

PREFACE

With refactoring, the balance of work changes. I found that design, rather than
occurring all up front, occurs continuously during development. As I build the
system, I learn how to improve the design. The result of this interaction is a
program whose design stays good as development continues.

What's in This Book?

This book is a guide to refactoring; it is written for a professional programmer.
My aim is to show you how to do refactoring in a controlled and efficient manner.
You will learn to refactor in such a way that you don’t introduce bugs into the
code but methodically improve its structure.

Traditionally, a book starts with an introduction. I agree with that in principle,
but I find it hard to introduce refactoring with a generalized discussion or
definitions—so I start with an example. Chapter 1 takes a small program with
some common design flaws and refactors it into a program that’s easier to under-
stand and change. This will show you both the process of refactoring and a
number of useful refactorings. This is the key chapter to read if you want to
understand what refactoring really is about.

In Chapter 2, I cover more of the general principles of refactoring, some defi-
nitions, and the reasons for doing refactoring. I outline some of the challenges
with refactoring. In Chapter 3, Kent Beck helps me describe how to find bad
smells in code and how to clean them up with refactorings. Testing plays a very
important role in refactoring, so Chapter 4 describes how to build tests into code.

The heart of the book—the catalog of refactorings—takes up the rest of its vol-
ume. While this is by no means a comprehensive catalog, it covers the key
refactorings that most developers will likely need. It grew from the notes I made
when learning about refactoring in the late 1990s, and I still use these notes now
as I don’t remember them all. When I want to do something, such as Split Phase
(154), the catalog reminds me how to do it in a safe, step-by-step manner. I hope
this is the part of the book that you'll come back to often.

A Web-First Book

The World-Wide Web has made an enormous impact on our society, particularly
affecting how we gather information. When I wrote this book, most of the
knowledge about software development was transferred through print. Now I
gather most of my information online. This has presented a challenge for authors
like myself: Is there still a role for books, and what should they look like?

I believe there still is role for books like this—but they need to change. The
value of a book is a large body of knowledge put together in a cohesive fashion.
In writing this book, I tried to cover many different refactorings and organize
them in a consistent and integrated manner.

Xv

Xvi

PREFACE

But that integrated whole is an abstract literary work that, while traditionally
represented by a paper book, need not be in the future. Most of the book industry
still sees the paper book as the primary representation, and while we've enthusi-
astically adopted ebooks, they are just electronic representations of an original
work based on the structure of a paper book.

With this book, I'm exploring a different approach. The canonical form of this
book is its web site or web edition. Access to the web edition is included with
the purchase of the print or ebook versions. (See note below about registering
your product on InformlIT.) The paper book is a selection of material from the
web site, arranged in a manner that makes sense for print. It doesn’t attempt to
include all the refactorings on the web site, particularly since I may well add
more refactorings to the canonical web edition in the future. Similarly, the ebook
is a different representation of the web book that may not include the same set
of refactorings as the printed book—after all, ebooks don't get heavy as I add
pages and they can be easily updated after they are bought.

I don’t know whether you're reading the web edition online, an ebook on your
phone, a paper copy, or some other form I can’t imagine as I write this. I do my
best to make this a useful work, whatever way you wish to absorb it.

For access to the canonical web edition and updates or corrections as they
become available, register your copy of Refactoring, Second Edition, on the InformIT
site. To start the registration process, go to informit.con/register and log in (or create
an account if you don't have one). Enter the ISBN 9780134757599 and click
Submit. You will be asked a challenge question, so be sure to have your copy of
the print or ebook available. After you've successfully registered your copy,
open the “Digital Purchases” tab on your Account page and click on the link under
this title to “Launch” the web edition.

JavaScript Examples

As in most technical areas of software development, code examples are very im-
portant to illustrate the concepts. However, the refactorings look mostly the same
in different languages. There will sometimes be particular things that a language
forces me to pay attention to, but the core elements of the refactorings remain
the same.

I chose JavaScript to illustrate these refactorings, as I felt that this language
would be readable by the most amount of people. You shouldn’t find it difficult,
however, to adapt the refactorings to whatever language you are currently using.
I try not to use any of the more complicated bits of the language, so you should
be able to follow the refactorings with only a cursory knowledge of JavaScript.
My use of JavaScript is certainly not an endorsement of the language.

Although I use JavaScript for my examples, that doesn’t mean the techniques
in this book are confined to JavaScript. The first edition of this book used Java,
and many programmers found it useful even though they never wrote a single
Java class. I did toy with illustrating this generality by using a dozen different

http://informit.com/register

PREFACE

languages for the examples, but I felt that would be too confusing for the reader.
Still, this book is written for programmers in any language. Outside of the example
sections, I'm not making any assumptions about the language. I expect the
reader to absorb my general comments and apply them to the language they
are using. Indeed, I expect readers to take the JavaScript examples and adapt
them to their language.

This means that, apart from discussing specific examples, when I talk about
“class,” “module,” “function,” etc., I use those terms in the general programming
meaning, not as specific terms of the JavaScript language model.

The fact that I'm using JavaScript as the example language also means that I
try to avoid JavaScript styles that will be less familiar to those who aren’t regular
JavaScript programmers. This is not a “refactoring in JavaScript” book—rather,
it's a general refactoring book that happens to use JavaScript. There are many
interesting refactorings that are specific to JavaScript (such as refactoring from
callbacks, to promises, to async/await) but they are out of scope for this book.

”ou

Who Should Read This Book?

I've aimed this book at a professional programmer—someone who writes software
for a living. The examples and discussion include a lot of code to read and un-
derstand. The examples are in JavaScript, but should be applicable to most lan-
guages. I would expect a programmer to have some experience to appreciate
what’s going on with this book, but I don’t assume much knowledge.

Although the primary target of this book is a developer seeking to learn
about refactoring, this book is also valuable for someone who already understands
refactoring—it can be used as a teaching aid. In this book, I've put a lot of effort
into explaining how various refactorings work, so an experienced developer can
use this material in mentoring their colleagues.

Although it is focused on the code, refactoring has a large impact on the design
of system. It is vital for senior designers and architects to understand the
principles of refactoring and to use them in their projects. Refactoring is best in-
troduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace. This is particularly true when you are using a language other
than JavaScript, because you'll have to adapt the examples I've given to other
languages.

Here’s how to get the most from this book without reading all of it.

» If you want to understand what refactoring is, read Chapter 1—the example
should make the process clear.

m If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

xvii

xviii

PREFACE

= If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

= If you want to actually do refactoring, read the first four chapters completely,
then skip-read the catalog. Read enough of the catalog to know, roughly,
what is in there. You don’t have to understand all the details. When you
actually need to carry out a refactoring, read the refactoring in detail and
use it to help you. The catalog is a reference section, so you probably won't
want to read it in one go.

An important part of writing this book was naming the various refactorings.
Terminology helps us communicate, so that when one developer advises another
to extract some code into a function, or to split some computation into separate
phases, both understand the references to Extract Function (106) and Split Phase
(154). This vocabulary also helps in selecting automated refactorings.

Building on a Foundation Laid by Others

I need to say right at the beginning that I owe a big debt with this book—a debt
to those whose work in the 1990s developed the field of refactoring. It was
learning from their experience that inspired and informed me to write the first
edition of this book, and although many years have passed, it's important that I
continue to acknowledge the foundation that they laid. Ideally, one of them
should have written that first edition, but I ended up being the one with the time
and energy.

Two of the leading early proponents of refactoring were Ward Cunningham
and Kent Beck. They used it as a foundation of development in the early
days and adapted their development processes to take advantage of it. In partic-
ular, it was my collaboration with Kent that showed me the importance of
refactoring—an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-Champaign
that is notable for its practical contributions to object technology. Ralph has long
been a champion of refactoring, and several of his students did vital early work
in this field. Bill Opdyke developed the first detailed written work on refactor-
ing in his doctoral thesis. John Brant and Don Roberts went beyond writing
words—they created the first automated refactoring tool, the Refactoring Browser,
for refactoring Smalltalk programs.

Many people have advanced the field of refactoring since the first edition of
this book. In particular, the work of those who have added automated refactorings
to development tools have contributed enormously to making programmers’ lives
easier. It's easy for me to take it for granted that I can rename a widely used
function with a simple key sequence—but that ease relies on the efforts of IDE
teams whose work helps us all.

PREFACE

Acknowledgments

Even with all that research to draw on, I still needed a lot of help to write this
book. The first edition drew greatly on experience and encouragement from
Kent Beck. He first introduced me to refactoring, inspired me to start writing
notes to record refactorings, and helped form them into finished prose. He came
up with the idea of Code Smells. I often feel he would have written the first
edition better than I had done—if we wasn't writing the foundation book for
Extreme Programming instead.

All the technical book authors I know mention the big debt they owe to tech-
nical reviewers. We've all written works with big flaws that were only caught by
our peers acting as reviewers. I don’t do a lot of technical review work myself,
partly because I don't think I'm very good at it, so I have a lot of admiration for
those who take it on. There’s not even a pittance to be made by reviewing
someone else’s book, so doing it is a great act of generosity.

When [started serious work on the book, I formed a mailing list of advisors
to give me feedback. As I made progress, I sent drafts of new material to this
group and asked them for their feedback. I want to thank the following for
posting their feedback on the mailing list: Arlo Belshee, Avdi Grimm, Beth
Anders-Beck, Bill Wake, Brian Guthrie, Brian Marick, Chad Wathington, Dave
Farley, David Rice, Don Roberts, Fred George, Giles Alexander, Greg Doench,
Hugo Corbucci, Ivan Moore, James Shore, Jay Fields, Jessica Kerr, Joshua
Kerievsky, Kevlin Henney, Luciano Ramalho, Marcos Brizeno, Michael Feathers,
Patrick Kua, Pete Hodgson, Rebecca Parsons, and Trisha Gee.

Of this group, I'd particularly like to highlight the special help I got on JavaScript
from Beth Anders-Beck, James Shore, and Pete Hodgson.

Once I had a pretty complete first draft, I sent it out for further review, because
I wanted to have some fresh eyes look at the draft as a whole. William Chargin
and Michael Hunger both delivered incredibly detailed review comments. I also
got many useful comments from Bob Martin and Scott Davis. Bill Wake added
to his contributions on the mailing list by doing a full review of the first draft.

My colleagues at ThoughtWorks are a constant source of ideas and feedback
on my writing. There are innumerable questions, comments, and observations
that have fueled the thinking and writing of this book. One of the great things
about being an employee at ThoughtWorks is that they allow me to spend con-
siderable time on writing. In particular, I appreciate the regular conversations
and ideas I get from Rebecca Parsons, our CTO.

At Pearson, Greg Doench is my acquisition editor, navigating many issues in
getting a book to publication. Julie Nahil is my production editor. I was glad
to again work with Dmitry Kirsanov for copyediting and Alina Kirsanova for
composition and indexing.

Xix

This page intentionally left blank

Chapter 1

Refactoring: A First Example

How do I begin to talk about refactoring? The traditional way is by introducing
the history of the subject, broad principles, and the like. When somebody does
that at a conference, 1 get slightly sleepy. My mind starts wandering, with a
low-priority background process polling the speaker until they give an example.

The examples wake me up because I can see what is going on. With principles,
it is too easy to make broad generalizations—and too hard to figure out how to
apply things. An example helps make things clear.

So I'm going to start this book with an example of refactoring. I'll talk about
how refactoring works and will give you a sense of the refactoring process. I can
then do the usual principles-style introduction in the next chapter.

With any introductory example, however, I run into a problem. If I pick a large
program, describing it and how it is refactored is too complicated for a mortal
reader to work through. (I tried this with the original book—and ended up
throwing away two examples, which were still pretty small but took over a hun-
dred pages each to describe.) However, if I pick a program that is small enough
to be comprehensible, refactoring does not look like it is worthwhile.

I'm thus in the classic bind of anyone who wants to describe techniques that
are useful for real-world programs. Frankly, it is not worth the effort to do all
the refactoring that I'm going to show you on the small program I will be using.
But if the code I'm showing you is part of a larger system, then the refactoring
becomes important. Just look at my example and imagine it in the context of a
much larger system.

The Starting Point

In the first edition of this book, my starting program printed a bill from a video
rental store, which may now lead many of you to ask: “What’s a video rental
store?” Rather than answer that question, I've reskinned the example to something
that is both older and still current.

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Image a company of theatrical players who go out to various events performing
plays. Typically, a customer will request a few plays and the company charges
them based on the size of the audience and the kind of play they perform. There
are currently two kinds of plays that the company performs: tragedies and
comedies. As well as providing a bill for the performance, the company gives its
customers “volume credits” which they can use for discounts on future perfor-
mances—think of it as a customer loyalty mechanism.

The performers store data about their plays in a simple JSON file that looks
something like this:

plays.json...

{
"hamlet": {"name": "Hamlet", "type": "tragedy"},
"as-like": {"name": "As You Like It", "type": "comedy"},
"othello": {"name": "Othello", "type": "tragedy"}

}

The data for their bills also comes in a JSON file:

invoices.json. ..

[
{
"customer": "BigCo",
"performances": [
{
"playID": "hamlet",
"audience": 55
}I
{
"playID": "as-like",
"audience": 35
}I
{
"playID": "othello",
"audience": 40
}
]
}
]

The code that prints the bill is this simple function:

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = "Statement for ${invoice.customer}\n';
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;

COMMENTS ON THE STARTING PROGRAM

for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount = 0;

switch (play.type) {
case "tragedy":
thisAmount = 40000;
if (perf.audience > 30) {
thisAmount += 1000 * (perf.audience - 30);
}
break;
case "comedy":
thisAmount = 30000;
if (perf.audience > 20) {
thisAmount += 10000 + 500 * (perf.audience - 20);
}
thisAmount += 300 * perf.audience;
break;
default:
throw new Error(unknown type: ${play.type}’);

}

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n’
totalAmount += thisAmount;

}

result += “Amount owed is ${format(totalAmount/100)}\n";

result += ‘You earned ${volumeCredits} credits\n';

return result;

}

Running that code on the test data files above results in the following output:

Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)
Amount owed is $1,730.00
You earned 47 credits

Comments on the Starting Program

What are your thoughts on the design of this program? The first thing I'd say is
that it's tolerable as it is—a program so short doesn’t require any deep structure
to be comprehensible. But remember my earlier point that I have to keep examples

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

small. Imagine this program on a larger scale—perhaps hundreds of lines long.
At that size, a single inline function is hard to understand.

Given that the program works, isn't any statement about its structure merely
an aesthetic judgment, a dislike of “ugly” code? After all, the compiler doesn’t
care whether the code is ugly or clean. But when I change the system, there is
a human involved, and humans do care. A poorly designed system is hard to
change—because it is difficult to figure out what to change and how these changes
will interact with the existing code to get the behavior I want. And if it is hard
to figure out what to change, there is a good chance that I will make mistakes
and introduce bugs.

Thus, if I'm faced with modifying a program with hundreds of lines of code,
I'd rather it be structured into a set of functions and other program elements that
allow me to understand more easily what the program is doing. If the program
lacks structure, it's usually easier for me to add structure to the program first,
and then make the change I need.

In this case, I have a couple of changes

When you have to add a fea_ that the users would like to make. First,

b I d they want a statement printed in HTML.
ture to a program ut the code Consider what impact this change would

is not structured in a conve- have. I'm faced with adding conditional

: : statements around every statement that
nient way, flTSt .refactor the adds a string to the resfl}it. That will add
program to make it easy to add a host of complexity to the function.
the feature, then add the Faced with that, most people prefer to

copy the method and change it to emit
feature' HTML. Making a copy may not seem too
onerous a task, but it sets up all sorts of
problems for the future. Any changes to the charging logic would force me to
update both methods—and to ensure they are updated consistently. If I'm writing
a program that will never change again, this kind of copy-and-paste is fine. But
if it's a long-lived program, then duplication is a menace.

This brings me to a second change. The players are looking to perform more
kinds of plays: they hope to add history, pastoral, pastoral-comical, historical-
pastoral, tragical-historical, tragical-comical-historical-pastoral, scene individable,
and poem unlimited to their repertoire. They haven't exactly decided yet what
they want to do and when. This change will affect both the way their plays are
charged for and the way volume credits are calculated. As an experienced devel-
oper I can be sure that whatever scheme they come up with, they will change it
again within six months. After all, when feature requests come, they come not
as single spies but in battalions.

Again, that statement method is where the changes need to be made to deal with
changes in classification and charging rules. But if I copy statement to htmlStatement,
I'd need to ensure that any changes are consistent. Furthermore, as the rules

THE FIRST STEP IN REFACTORING

grow in complexity, it's going to be harder to figure out where to make the
changes and harder to do them without making a mistake.

Let me stress that it's these changes that drive the need to perform refactoring.
If the code works and doesn't ever need to change, it's perfectly fine to leave it
alone. It would be nice to improve it, but unless someone needs to understand
it, it isn't causing any real harm. Yet as soon as someone does need to under-
stand how that code works, and struggles to follow it, then you have to do
something about it.

The First Step in Refactoring

Whenever I do refactoring, the first step is always the same. I need to ensure I
have a solid set of tests for that section of code. The tests are essential because
even though I will follow refactorings structured to avoid most of the opportunities
for introducing bugs, I'm still human and still make mistakes. The larger a pro-
gram, the more likely it is that my changes will cause something to break
inadvertently—in the digital age, frailty’s name is software.

Since the statement returns a string, what I do is create a few invoices, give each
invoice a few performances of various kinds of plays, and generate the statement
strings. I then do a string comparison between the new string and some refer-
ence strings that I have hand-checked. I set up all of these tests using a testing
framework so I can run them with just a simple keystroke in my development
environment. The tests take only a few seconds to run, and as you will see, I run
them often.

An important part of the tests is the way they report their results. They either
go green, meaning that all the strings are identical to the reference strings, or
red, showing a list of failures—the lines that turned out differently. The tests are
thus self-checking. It is vital to make tests self-checking. If I don't, I'd end up
spending time hand-checking values from the test against values on a desk pad,
and that would slow me down. Modern testing frameworks provide all the features
needed to write and run self-checking tests.

As I do the refactoring, I'll lean on the

tests. I think of them as a bug detector Before you start refactoring,

to protect me against my own mistakes. k I lid
By writing what [want twice, in the code make sure you hnave a Soil

and in the test, I have to make the mis- Suife Of tests. These tests must

take consistently in both places to fool - :
the detector. By double-checking my be Self C]’lECkll’lg.

work, I reduce the chance of doing

something wrong. Although it takes time to build the tests, I end up saving that
time, with considerable interest, by spending less time debugging. This is such
an important part of refactoring that I devote a full chapter to it (Building Tests

(85)).

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Decomposing the statement Function

When refactoring a long function like this, I mentally try to identify points that
separate different parts of the overall behavior. The first chunk that leaps to my
eye is the switch statement in the middle.

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n";
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount = 0;

switch (play.type) {
case "tragedy":
thisAmount = 40000;
if (perf.audience > 30) {
thisAmount += 1000 * (perf.audience - 30);
}
break;
case "comedy":
thisAmount = 30000;
if (perf.audience > 20) {
thisAmount += 10000 + 500 * (perf.audience - 20);

}
thisAmount += 300 * perf.audience;
break;
default:
throw new Error(unknown type: ${play.type});
}

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n
totalAmount += thisAmount;

}

result += ‘Amount owed is ${format(totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n;

return result;

DECOMPOSING THE STATEMENT FUNCTION

As I look at this chunk, I conclude that it's calculating the charge for one per-
formance. That conclusion is a piece of insight about the code. But as Ward
Cunningham puts it, this understanding is in my head—a notoriously volatile
form of storage. I need to persist it by moving it from my head back into the
code itself. That way, should I come back to it later, the code will tell me what
it's doing—I don't have to figure it out again.

The way to put that understanding into code is to turn that chunk of code into
its own function, naming it after what it does—something like amountFor(aPerformance).
When I want to turn a chunk of code into a function like this, I have a procedure
for doing it that minimizes my chances of getting it wrong. I wrote down this
procedure and, to make it easy to reference, named it Extract Function (106).

First, I need to look in the fragment for any variables that will no longer be in
scope once I've extracted the code into its own function. In this case, I have three:
perf, play, and thisAmount. The first two are used by the extracted code, but not
modified, so I can pass them in as parameters. Modified variables need more
care. Here, there is only one, so I can return it. I can also bring its initialization
inside the extracted code. All of which yields this:

function statement...
function amountFor(perf, play) {

switch (play.type) {
case "tragedy":
thisAmount = 40000;
if (perf.audience > 30) {
thisAmount += 1000 * (perf.audience - 30);
}
break;
case "comedy":
thisAmount = 30000;
if (perf.audience > 20) {
thisAmount += 10000 + 500 * (perf.audience - 20);
}
thisAmount += 300 * perf.audience;
break;
default:
throw new Error(unknown type: ${play.type});
}

}

When I use a header like “function someName...” in italics for some code, that means
that the following code is within the scope of the function, file, or class named in the
header. There is usually other code within that scope that I won't show, as I'm not
discussing it at the moment.

The original statement code now calls this function to populate thisAmount:

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

top level...
function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = "Statement for ${invoice.customer}\n';
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount =

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n
totalAmount += thisAmount;

}

result += “Amount owed is ${format(totalAmount/100)}\n";
result += ‘You earned ${volumeCredits} credits\n';
return result;

Once I've made this change, I immediately compile and test to see if I've broken
anything. It's an important habit to test after every refactoring, however simple.
Mistakes are easy to make—at least, I find them easy to make. Testing after each
change means that when I make a mistake, I only have a small change to consider
in order to spot the error, which makes it far easier to find and fix. This is the
essence of the refactoring process: small changes and testing after each change.
If I try to do too much, making a mistake will force me into a tricky debugging
episode that can take a long time. Small changes, enabling a tight feedback loop,
are the key to avoiding that mess.

I use compile here to mean doing whatever is needed to make the JavaScript executable.
Since JavaScript is directly executable, that may mean nothing, but in other cases it
may mean moving code to an output directory and/or using a processor such as Babel
[babel].

This being JavaScript, I can extract
Refactoﬁng changes the pro- amountFor into a nested function of statement.

. 11 st . This is helpful as it means I don’t have
grams in smail Sieps, S0 lfyOM to pass data that's inside the scope of the

make a mistake, it is easy to containing function to the newly

. . extracted function. That doesn’'t make a
ﬁnd where the bug 5. difference in this case, but it's one less

issue to deal with.

DECOMPOSING THE STATEMENT FUNCTION

In this case the tests passed, so my next step is to commit the change to my
local version control system. I use a version control system, such as git or mercu-
rial, that allows me to make private commits. I commit after each successful
refactoring, so I can easily get back to a working state should I mess up later. I
then squash changes into more significant commits before I push the changes to
a shared repository.

Extract Function (106) is a common refactoring to automate. If I was programming
in Java, I would have instinctively reached for the key sequence for my IDE to
perform this refactoring. As I write this, there is no such robust support for this
refactoring in JavaScript tools, so I have to do this manually. It's not hard, although
I have to be careful with those locally scoped variables.

Once I've used Extract Function (106), | take a look at what I've extracted to see
if there are any quick and easy things I can do to clarify the extracted function.
The first thing I do is rename some of the variables to make them clearer, such
as changing thisAmount to result.

function statement...

function amountFor(perf, play) {
let =0;
switch (play.type) {
case "tragedy":
= 40000;
if (perf.audience > 30) {
+= 1000 * (perf.audience - 30);
}
break;
case "comedy":
= 30000;
if (perf.audience > 20) {
+= 10000 + 500 * (perf.audience - 20);

}
+= 300 * perf.audience;
break;
default:
throw new Error(unknown type: ${play.type});
}
return ;

}

It's my coding standard to always call the return value from a function “result”.
That way I always know its role. Again, I compile, test, and commit. Then I move
onto the first argument.

10

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function statement...

function amountFor(, play) {
let result = 0;
switch (play.type) {
case "tragedy":
result = 40000;

if (.audience > 30) {

result += 1000 * (.audience - 30);
}
break;

case "comedy":
result = 30000;

if (.audience > 20) {
result += 10000 + 500 * (.audience - 20);
}
result += 300 * .audience;
break;
default:
throw new Error(unknown type: ${play.type}");
}
return result;
}

Again, this is following my coding style. With a dynamically typed language
such as JavaScript, it's useful to keep track of types—hence, my default name for
a parameter includes the type name. I use an indefinite article with it unless there
is some specific role information to capture in the name. I learned this convention
from Kent Beck [Beck SBPP] and continue to find it helpful.

Is this renaming worth the effort? Ab-

Any fOOl can write code that a solutely. Good code should clearly com-

" derstand municate what it is doing, and variable
computer can. - UNAETSLANL. pames are a key to clear code. Never be

Good programmers write code afraid to change names to improve
that humans can understand. ~€12%- With good find-and-replace tools,
it is usually not difficult; testing, and
static typing in a language that supports
it, will highlight any occurrences you miss. And with automated refactoring tools,
it's trivial to rename even widely used functions.
The next item to consider for renaming is the play parameter, but I have a
different fate for that.

Removing the play Variable

As 1 consider the parameters to amountfor, I look to see where they come from.
aPerformance comes from the loop variable, so naturally changes with each iteration

DECOMPOSING THE STATEMENT FUNCTION

through the loop. But play is computed from the performance, so there’s no need
to pass it in as a parameter at all—I can just recalculate it within amountFor. When
I'm breaking down a long function, I like to get rid of variables like play, because
temporary variables create a lot of locally scoped names that complicate
extractions. The refactoring I will use here is Replace Temp with Query (178).

I begin by extracting the right-hand side of the assignment into a function.

function statement...

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n";
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {
const play = ;
let thisAmount = amountFor(perf, play);

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n’
totalAmount += thisAmount;

}

result += ‘Amount owed is ${format(totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n";

return result;

I compile-test-commit, and then use Inline Variable (123).

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = "Statement for ${invoice.customer}\n';
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;

11

12 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

for (let perf of invoice.performances) {

let thisAmount = amountFor(perf,)

// add volume credits
volumeCredits += Math.max(perf.audience - 30, 0);
// add extra credit for every ten comedy attendees

if ("comedy" === .type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order

result += ° ${ .name}: ${format(thisAmount/100)} (${perf.audience} seats)\n’
totalAmount += thisAmount;

}

result += “Amount owed is ${format(totalAmount/100)}\n";
result += "You earned ${volumeCredits} credits\n';
return result;

I compile-test-commit. With that inlined, I can then apply Change Function
Declaration (124) to amountFor to remove the play parameter. I do this in two steps.
First, I use the new function inside amountFor.

function statement...

function amountFor(aPerformance, play) {
let result = 0;
switch (.type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${ type});
}
return result;

}

I compile-test-commit, and then delete the parameter.

DECOMPOSING THE STATEMENT FUNCTION

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = "Statement for ${invoice.customer}\n';
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {
let thisAmount = amountFor(perf—steytesteers);

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${playFor(perf).name}: ${format(thisAmount/100)} (${perf.audience} seats)\n;
totalAmount += thisAmount;

}

result += ‘Amount owed is ${format(totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n;

return result;

function statement...

function amountFor(aPerformance—stay) {
let result = 0;
switch (playFor(aPerformance).type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${playFor(aPerformance).type}’);
}
return result;

}

And compile-test-commit again.

13

14

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

This refactoring alarms some programmers. Previously, the code to look up
the play was executed once in each loop iteration; now, it's executed thrice. I'll
talk about the interplay of refactoring and performance later, but for the moment
I'll just observe that this change is unlikely to significantly affect performance,
and even if it were, it is much easier to improve the performance of a well-factored
code base.

The great benefit of removing local variables is that it makes it much easier to
do extractions, since there is less local scope to deal with. Indeed, usually I'll
take out local variables before I do any extractions.

Now that I'm done with the arguments to amountfFor, I look back at where it's
called. It's being used to set a temporary variable that’'s not updated again, so I
apply Inline Variable (123).

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n’;
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${playFor(perf).name}: ${format((perf)/100)} (${perf.audience} seats)\n
totalAmount += (perf);

}

result += “Amount owed is ${format(totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n;

return result;

Extracting Volume Credits
Here's the current state of the statement function body:

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n";
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;

DECOMPOSING THE STATEMENT FUNCTION

for (let perf of invoice.performances) {

// add volume credits

volumeCredits += Math.max(perf.audience - 30, 0);

// add extra credit for every ten comedy attendees

if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ° ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n';
totalAmount += amountFor(perf);

}

result += “Amount owed is ${format(totalAmount/100)}\n";

result += "You earned ${volumeCredits} credits\n';

return result;

Now I get the benefit from removing the play variable as it makes it easier to
extract the volume credits calculation by removing one of the locally scoped
variables.

I still have to deal with the other two. Again, perf is easy to pass in, but
volumeCredits is a bit more tricky as it is an accumulator updated in each pass of
the loop. So my best bet is to initialize a shadow of it inside the extracted function
and return it.

function statement...

let volumeCredits = 0;

volumeCredits += Math.max(perf.audience - 30, 0);

if ("comedy" === playFor(perf).type) volumeCredits += Math.floor(perf.audience / 5);
return volumeCredits;

}

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n’;
const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {

// print line for this order
result += ° ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n;
totalAmount += amountFor(perf);

}

result += “Amount owed is ${format(totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n;

return result;

I remove the unnecessary (and, in this case, downright misleading) comment.

15

16

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

I compile-test-commit that, and then rename the variables inside the new
function.

function statement...

function volumeCreditsFor() {
let =0;
+= Math.max(.audience - 30, 0);
if ("comedy" === playFor(). type) += Math.floor(aPerformance.audience / 5);
return ;
}

I've shown it in one step, but as before I did the renames one at a time, with
a compile-test-commit after each.

Removing the format Variable
Let's look at the main statement method again:

top level...
function statement (invoice, plays) {

let totalAmount = 0;

let volumeCredits = 0;

let result = “Statement for ${invoice.customer}\n";

const format = new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",

minimumFractionDigits: 2 }).format;
for (let perf of invoice.performances) {
volumeCredits += volumeCreditsFor(perf);

// print line for this order
result += ° ${playFor(perf).name}: ${format(amountFor(perf)/100)} (${perf.audience} seats)\n';
totalAmount += amountFor(perf);

}

result += ‘Amount owed is ${format(totalAmount/100)}\n";
result += "You earned ${volumeCredits} credits\n’;
return result;

As I suggested before, temporary variables can be a problem. They are only
useful within their own routine, and therefore they encourage long, complex
routines. My next move, then, is to replace some of them. The easiest one is
format. This is a case of assigning a function to a temp, which I prefer to replace
with a declared function.

function statement...

return new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format(aNumber);

DECOMPOSING THE STATEMENT FUNCTION

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = "Statement for ${invoice.customer}\n';
for (let perf of invoice.performances) {
volumeCredits += volumeCreditsFor(perf);

// print line for this order
result += ° ${playFor(perf).name}: ${ (amountFor(perf)/100)} (${perf.audience} seats)\n;
totalAmount += amountFor(perf);

}

result += ‘Amount owed is ${ (totalAmount/100)}\n";

result += “You earned ${volumeCredits} credits\n";

return result;

Although changing a function variable to a declared function is a refactoring, I haven't
named it and included it in the catalog. There are many refactorings that I didn't feel
important enough for that. This one is both simple to do and relatively rare, so I didn’t
think it was worthwhile.

I'm not keen on the name—"format” doesn'’t really convey enough of what it’s
doing. “formatAsUSD” would be a bit too long-winded since it’s being used in a
string template, particularly within this small scope. I think the fact that it's for-
matting a currency amount is the thing to highlight here, so I pick a name that
suggests that and apply Change Function Declaration (124).

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
volumeCredits += volumeCreditsFor(perf);

// print line for this order
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n’
totalAmount += amountFor(perf);

}

result += “Amount owed is ${usd(totalAmount)}\n";

result += ‘You earned ${volumeCredits} credits\n';

return result;

function statement...

function (aNumber) {
return new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format(aNumber);

18

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Naming is both important and tricky. Breaking a large function into smaller
ones only adds value if the names are good. With good names, I don't have to
read the body of the function to see what it does. But it's hard to get names right
the first time, so I use the best name I can think of for the moment, and don't
hesitate to rename it later. Often, it takes a second pass through some code to
realize what the best name really is.

As I'm changing the name, I also move the duplicated division by 100 into the
function. Storing money as integer cents is a common approach—it avoids
the dangers of storing fractional monetary values as floats but allows me to use
arithmetic operators. Whenever I want to display such a penny-integer number,
however, I need a decimal, so my formatting function should take care of the
division.

Removing Total Volume Credits

My next target variable is voluneCredits. This is a trickier case, as it’s built up during
the iterations of the loop. My first move, then, is to use Split Loop (227) to
separate the accumulation of volumeCredits.

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = “Statement for ${invoice.customer}\n";

result += “Amount owed is ${usd(totalAmount)}\n";
result += ‘You earned ${volumeCredits} credits\n';
return result;

With that done, I can use Slide Statements (223) to move the declaration of the
variable next to the loop.

DECOMPOSING THE STATEMENT FUNCTION

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {

// print line for this order
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n";
totalAmount += amountFor(perf);

}

for (let perf of invoice.performances) {
volumeCredits += volumeCreditsFor(perf);

}

result += ‘Amount owed is ${usd(totalAmount)}\n";

result += “You earned ${volumeCredits} credits\n’;

return result;

Gathering together everything that updates the volumeCredits variable makes it
easier to do Replace Temp with Query (178). As before, the first step is to apply
Extract Function (106) to the overall calculation of the variable.

function statement...

let volumeCredits = 0;

for (let perf of invoice.performances) {
volumeCredits += volumeCreditsFor(perf);

}

return volumeCredits;

}

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {

// print line for this order
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n’;
totalAmount += amountFor(perf);

}

let volumeCredits =

result += “Amount owed is ${usd(totalAmount)}\n";

result += ‘You earned ${volumeCredits} credits\n';

return result;

Once everything is extracted, I can apply Inline Variable (123):

19

20

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

top level...

function statement (invoice, plays) {
let totalAmount = 0;
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {

// print line for this order
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n";
totalAmount += amountFor(perf);

}

result += “Amount owed is ${usd(totalAmount)}\n";
result += ‘You earned ${ } credits\n’;
return result;

Let me pause for a bit to talk about what I've just done here. Firstly, I know
readers will again be worrying about performance with this change, as many
people are wary of repeating a loop. But most of the time, rerunning a loop like
this has a negligible effect on performance. If you timed the code before and
after this refactoring, you would probably not notice any significant change in
speed—and that’s usually the case. Most programmers, even experienced ones,
are poor judges of how code actually performs. Many of our intuitions are broken
by clever compilers, modern caching techniques, and the like. The performance
of software usually depends on just a few parts of the code, and changes anywhere
else don't make an appreciable difference.

But “mostly” isn’t the same as “alwaysly.” Sometimes a refactoring will have a
significant performance implication. Even then, I usually go ahead and do it, be-
cause it's much easier to tune the performance of well-factored code. If I introduce
a significant performance issue during refactoring, I spend time on performance
tuning afterwards. It may be that this leads to reversing some of the refactoring
I did earlier—but most of the time, due to the refactoring, I can apply a more ef-
fective performance-tuning enhancement instead. I end up with code that's both
clearer and faster.

So, my overall advice on performance with refactoring is: Most of the time you
should ignore it. If your refactoring introduces performance slow-downs, finish
refactoring first and do performance tuning afterwards.

The second aspect I want to call your attention to is how small the steps were
to remove volumeCredits. Here are the four steps, each followed by compiling, testing,
and committing to my local source code repository:

= Split Loop (227) to isolate the accumulation
m Slide Statements (223) to bring the initializing code next to the accumulation
m Extract Function (106) to create a function for calculating the total

m [nline Variable (123) to remove the variable completely

DECOMPOSING THE STATEMENT FUNCTION

I confess I don’t always take quite as short steps as these—but whenever things
get difficult, my first reaction is to take shorter steps. In particular, should a test
fail during a refactoring, if I can’t immediately see and fix the problem, I'll revert
to my last good commit and redo what I just did with smaller steps. That works
because I commit so frequently and because small steps are the key to moving
quickly, particularly when working with difficult code.

I then repeat that sequence to remove totalAmount. I start by splitting the loop
(compile-test-commit), then I slide the variable initialization (compile-test-commit),
and then I extract the function. There is a wrinkle here: The best name for the
function is “totalAmount”, but that's the name of the variable, and I can’t have
both at the same time. So I give the new function a random name when I extract
it (and compile-test-commit).

function statement...

let totalAmount = 0;

for (let perf of invoice.performances) {
totalAmount += amountFor(perf);

}

return totalAmount;

}

top level...

function statement (invoice, plays) {
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n";

}
let totalAmount = ;

result += “Amount owed is ${usd(totalAmount)}\n";
result += "You earned ${totalVolumeCredits()} credits\n';
return result;

Then I inline the variable (compile—test—commit) and rename the function to
something more sensible (compile—test—commit).

top level...

function statement (invoice, plays) {
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n";
}
result += “Amount owed is ${usd(JAn;
result += "You earned ${totalVolumeCredits()} credits\n';
return result;

21

22

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function statement...
function 01
let totalAmount = 0;
for (let perf of invoice.performances) {
totalAmount += amountFor(perf);

}

return totalAmount;

}

I also take the opportunity to change the names inside my extracted functions
to adhere to my convention.

function statement...
function totalAmount() {
let =0;
for (let perf of invoice.performances) {
+= amountFor(perf);

}
return H

}

function totalVolumeCredits() {
let = 0;

for (let perf of invoice.performances) {
+= volumeCreditsFor(perf);

}

return ;

}

Status: Lots of Nested Functions

Now is a good time to pause and take a look at the overall state of the code:

function statement (invoice, plays) {
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n’;
}
result += “Amount owed is ${usd(totalAmount())}\n;
result += "You earned ${totalVolumeCredits()} credits\n;
return result;

function totalAmount() {
let result = 0;
for (let perf of invoice.performances) {
result += amountFor(perf);
}
return result;

}

}

STATUS: LOTS OF NESTED FUNCTIONS

function totalVolumeCredits() {
let result = 0;
for (let perf of invoice.performances) {
result += volumeCreditsFor(perf);
}
return result;
}
function usd(aNumber) {
return new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format(aNumber/100);
}
function volumeCreditsFor(aPerformance) {
let result = 0;
result += Math.max(aPerformance.audience - 30, 0);
if ("comedy" === playFor(aPerformance).type) result += Math.floor(aPerformance.audience / 5);
return result;
}
function playFor(aPerformance) {
return plays[aPerformance.playID];
}
function amountFor(aPerformance) {
let result = 0;
switch (playFor(aPerformance).type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${playFor(aPerformance).type}');
}
return result;

}

The structure of the code is much better now. The top-level statement function
is now just seven lines of code, and all it does is laying out the printing of the
statement. All the calculation logic has been moved out to a handful of supporting
functions. This makes it easier to understand each individual calculation as well
as the overall flow of the report.

23

24

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Splitting the Phases of Calculation and Formatting

So far, my refactoring has focused on adding enough structure to the function so
that I can understand it and see it in terms of its logical parts. This is often the
case early in refactoring. Breaking down complicated chunks into small pieces is
important, as is naming things well. Now, I can begin to focus more on the
functionality change I want to make—specifically, providing an HTML version of
this statement. In many ways, it's now much easier to do. With all the calculation
code split out, all I have to do is write an HTML version of the seven lines
of code at the top. The problem is that these broken-out functions are nested
within the textual statement method, and I don’t want to copy and paste them
into a new function, however well organized. I want the same calculation functions
to be used by the text and HTML versions of the statement.

There are various ways to do this, but one of my favorite techniques is Split
Phase (154). My aim here is to divide the logic into two parts: one that calculates
the data required for the statement, the other that renders it into text or HTML.
The first phase creates an intermediate data structure that it passes to the second.

I start a Split Phase (154) by applying Extract Function (106) to the code that
makes up the second phase. In this case, that’s the statement printing code, which
is in fact the entire content of statement. This, together with all the nested functions,
goes into its own top-level function which I call renderPlainText.

function statement (invoice, plays) {
return renderPlainText(invoice, plays);

}

function renderPlainText(invoice, plays) {
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n
}
result += “Amount owed is ${usd(totalAmount())}\n";
result += "You earned ${totalVolumeCredits()} credits\n';
return result;

function totalAmount() {...}
function totalVolumeCredits() {...}
function usd(aNumber) {...}
function volumeCreditsFor(aPerformance) {...}
function playFor(aPerformance) {...}
function amountFor(aPerformance) {...}

SPLITTING THE PHASES OF CALCULATION AND FORMATTING

I do my usual compile-test-commit, then create an object that will act as my
intermediate data structure between the two phases. I pass this data object in as
an argument to renderPlainText (compile—test—commit).

function statement (invoice, plays) {

return renderPlainText(, invoice, plays);
}

function renderPlainText (, invoice, plays) {
let result = “Statement for ${invoice.customer}\n";
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n
}
result += “Amount owed is ${usd(totalAmount())}\n";
result += "You earned ${totalVolumeCredits()} credits\n’;
return result;

function totalAmount() {...}
function totalVolumeCredits() {...}
function usd(aNumber) {...}
function volumeCreditsFor(aPerformance) {...}
function playFor(aPerformance) {...}
function amountFor(aPerformance) {...}

I now examine the other arguments used by renderPlainText. I want to move
the data that comes from them into the intermediate data structure, so that all the
calculation code moves into the statement function and renderPlainText operates
solely on data passed to it through the data parameter.

My first move is to take the customer and add it to the intermediate object
(compile-test-commit).

function statement (invoice, plays) {
const statementData = {};

return renderPlainText(statementData, invoice, plays);

}

function renderPlainText(data, invoice, plays) {
let result = "Statement for ${ .customer}\n’;
for (let perf of invoice.performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n
}
result += “Amount owed is ${usd(totalAmount())}\n';
result += “You earned ${totalVolumeCredits()} credits\n’;
return result;

25

26 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Similarly, I add the performances, which allows me to delete the invoice
parameter to renderPlainText (compile—test—commit).

top level...

function statement (invoice, plays) {
const statementData = {};
statementData.customer = invoice.customer;

return renderPlainText(statementData, +rvetee —plays);

}

function renderPlainText(data, plays) {
let result = “Statement for ${data.customer}\n’;
for (let perf of .performances) {
result += ° ${playFor(perf).name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n’;
}
result += “Amount owed is ${usd(totalAmount())}\n;
result += ‘You earned ${totalVolumeCredits()} credits\n';
return result;

function renderPlainText...

function totalAmount() {
let result = 0;

for (let perf of .performances) {
result += amountFor(perf);
}
return result;
}

function totalVolumeCredits() {
let result = 0;

for (let perf of .performances) {
result += volumeCreditsFor(perf);

}

return result;

}

Now I'd like the play name to come from the intermediate data. To do this, I

need to enrich the performance record with data from the play (compile-test-
commit).

SPLITTING THE PHASES OF CALCULATION AND FORMATTING

function statement (invoice, plays) {
const statementData = {};
statementData.customer = invoice.customer;
statementData.performances = invoice.performances
return renderPlainText(statementData, plays);

At the moment, I'm just making a copy of the performance object, but I'll
shortly add data to this new record. I take a copy because I don’t want to modify
the data passed into the function. I prefer to treat data as immutable as much as
I can—mutable state quickly becomes something rotten.

The idiom result = Object.assign({}, aPerformance) looks very odd to people unfamiliar to
JavaScript. It performs a shallow copy. I'd prefer to have a function for this, but it's one
of those cases where the idiom is so baked into JavaScript usage that writing my own
function would look out of place for JavaScript programmers.

Now I have a spot for the play, I need to add it. To do that, I need to apply
Move Function (198) to playFor and statement (compile-test-commit).

function statement...

function enrichPerformance(aPerformance) {
const result = Object.assign({}, aPerformance);

return result;

}

(aPerformance) {
return plays[aPerformance.playID];

}

I then replace all the references to playFor in renderPlainText to use the data instead
(compile-test-commit).

27

28 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function renderPlainText...

let result = “Statement for ${data.customer}\n’;
for (let perf of data.performances) {
result += ° ${ .name}: ${usd(amountFor(perf))} (${perf.audience} seats)\n";
}
result += “Amount owed is ${usd(totalAmount())}\n";
result += "You earned ${totalVolumeCredits()} credits\n';
return result;

function volumeCreditsFor(aPerformance) {
let result = 0;
result += Math.max(aPerformance.audience - 30, 0);
if ("comedy" === aPerformance .type) result += Math.floor(aPerformance.audience / 5)
return result;

}

function amountFor(aPerformance) {
let result = 0;
switch (aPerformance .type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${aPerformance .type}’)
}

return result;

}
I then move amountFor in a similar way (compile-test-commit).

function statement...

function enrichPerformance(aPerformance) {
const result = Object.assign({}, aPerformance);
result.play = playFor(result);

return result;

}

(aPerformance) {...}

SPLITTING THE PHASES OF CALCULATION AND FORMATTING

function renderPlainText...

let result = “Statement for ${data.customer}\n’;
for (let perf of data.performances) {
result += ° ${perf.play.name}: ${usd()} (${perf.audience} seats)\n";
}
result += “Amount owed is ${usd(totalAmount())}\n";
result += "You earned ${totalVolumeCredits()} credits\n';
return result;

function totalAmount() {
let result = 0;
for (let perf of data.performances) {
result += perf
}
return result;

}

1

Next, I move the volume credits calculation (compile—test—commit).

function statement...

function enrichPerformance(aPerformance) {
const result = Object.assign({}, aPerformance);
result.play = playFor(result);
result.amount = amountFor(result);

return result;

}

(aPerformance) {...}

function renderPlainText...
function totalVolumeCredits() {
let result = 0;
for (let perf of data.performances) {
result += perf ;
}
return result;

}
Finally, I move the two calculations of the totals.

function statement...

const statementData = {};
statementData.customer = invoice.customer;
statementData.performances = invoice.performances.map(enrichPerformance);

return renderPlainText(statementData, plays);

function totalAmount() {...}
function totalVolumeCredits() {...}

29

30

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function renderPlainText...

let result = “Statement for ${data.customer}\n’;
for (let perf of data.performances) {
result += ° ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n;

}
result += “Amount owed is ${usd(JAn®
result += "You earned ${ } credits\n’;

return result;

Although I could have modified the bodies of these totals functions to use the
statementData variable (as it's within scope), I prefer to pass the explicit parameter.

And, once I'm done with compile-test-commit after the move, I can't resist a
couple quick shots of Replace Loop with Pipeline (231).

function renderPlainText...

function totalAmount(data) {
return data.performances
.reduce((total, p) => total + p.amount, 0);

}
function totalVolumeCredits(data) {

return data.performances
.reduce((total, p) => total + p.volumeCredits, 0);

}

I now extract all the first-phase code into its own function (compile—test—commit).

top level...
function statement (invoice, plays) {

}

function createStatementData(invoice, plays) {
const statementData = {};
statementData.customer = invoice.customer;
statementData.performances = invoice.performances.map(enrichPerformance);
statementData.totalAmount = totalAmount(statementData);
statementData.totalVolumeCredits = totalVolumeCredits(statementData);

Since it's clearly separate now, I move it to its own file (and alter the name of
the returned result to match my usual convention).

statement.js...
import createStatementData from './createStatementData.js';

STATUS: SEPARATED INTO TWO FILES (AND PHASES)

createStatementData.js...

export default function createStatementData(invoice, plays) {
const result = {};
result.customer = invoice.customer;
result.performances = invoice.performances.map(enrichPerformance);
result.totalAmount = totalAmount(result);
result.totalVolumeCredits = totalVolumeCredits(result);
return result;

function enrichPerformance(aPerformance) {...}
function playFor(aPerformance) {...}
function amountFor(aPerformance) {...}
function volumeCreditsFor(aPerformance) {...}
function totalAmount(data) {...}
function totalVolumeCredits(data) {...}

One final swing of compile-test-commit—and now it's easy to write an HTML
version.

statement.js...

function htmlStatement (invoice, plays) {
return renderHtml(createStatementData(invoice, plays));
}
function renderHtml (data) {
let result = “<h1>Statement for ${data.customer}</h1>\n";
result += "<table>\n";
result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
for (let perf of data.performances) {
result += ° <tr><td>${perf.play.name}</td><td>${perf.audience}</td>";
result += “<td>${usd(perf.amount)}</td></tr>\n";
}
result += "</table>\n";
result += “<p>Amount owed is ${usd(data.totalAmount)}</p>\n";
result += “<p>You earned ${data.totalVolumeCredits} credits</p>\n";
return result;

}

function usd(aNumber) {...}

(I moved usd to the top level, so that rendertitnl could use it.)

Status: Separated into Two Files (and Phases)

This is a good moment to take stock again and think about where the code is
now. I have two files of code.

32 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

statement.js

import createStatementData from './createStatementData.js';
function statement (invoice, plays) {
return renderPlainText(createStatementData(invoice, plays));
}
function renderPlainText(data, plays) {
let result = "Statement for ${data.customer}\n';
for (let perf of data.performances) {
result += ° ${perf.play.name}: ${usd(perf.amount)} (${perf.audience} seats)\n
}
result += ‘Amount owed is ${usd(data.totalAmount)}\n";
result += "You earned ${data.totalVolumeCredits} credits\n";
return result;
}
function htmlStatement (invoice, plays) {
return renderHtml(createStatementData(invoice, plays));
}
function renderHtml (data) {
let result = "<h1>Statement for ${data.customer}</h1>\n";
result += "<table>\n";
result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>";
for (let perf of data.performances) {
result += * <tr><td>${perf.play.name}</td><td>${perf.audience}</td>";
result += “<td>${usd(perf.amount)}</td></tr>\n";
}
result += "</table>\n";
result += “<p>Amount owed is ${usd(data.totalAmount)}</p>\n";
result += “<p>You earned ${data.totalVolumeCredits} credits</p>\n";
return result;
}
function usd(aNumber) {
return new Intl.NumberFormat("en-US",
{ style: "currency", currency: "USD",
minimumFractionDigits: 2 }).format(aNumber/100);

}

createStatementData.js

export default function createStatementData(invoice, plays) {
const result = {};
result.customer = invoice.customer;
result.performances = invoice.performances.map(enrichPerformance);
result.totalAmount = totalAmount(result);
result.totalVolumeCredits = totalVolumeCredits(result);
return result;

function enrichPerformance(aPerformance) {
const result = Object.assign({}, aPerformance);
result.play = playFor(result);
result.amount = amountFor(result);
result.volumeCredits = volumeCreditsFor(result);
return result;

STATUS: SEPARATED INTO TWO FILES (AND PHASES)

function playFor(aPerformance) {
return plays[aPerformance.playID]
}
function amountFor(aPerformance) {
let result = 0;
switch (aPerformance.play.type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${aPerformance.play.type}');
}
return result;
}
function volumeCreditsFor(aPerformance) {
let result = 0;
result += Math.max(aPerformance.audience - 30, 0);
if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
return result;
}
function totalAmount(data) {
return data.performances
.reduce((total, p) => total + p.amount, 0);
}
function totalVolumeCredits(data) {
return data.performances
.reduce((total, p) => total + p.volumeCredits, 0);
}

I have more code than I did when I started: 70 lines (not counting htmlStatenent)
as opposed to 44, mostly due to the extra wrapping involved in putting things
in functions. If all else is equal, more code is bad—but rarely is all else equal.
The extra code breaks up the logic into identifiable parts, separating the calcula-
tions of the statements from the layout. This modularity makes it easier for me
to understand the parts of the code and how they fit together. Brevity is the soul
of wit, but clarity is the soul of evolvable software. Adding this modularity allows
to me to support the HTML version of the code without any duplication of the
calculations.

33

34

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

There are more things I could do to
When programmzng[follow the 51mp11fy the printing IOgiC, but this will

.) do for the moment. I always have to
campmng rule: Always leave the strike a balance between all the refactor-
code base healthier than when ings1could do and adding new features.

: At the moment, most people under-
you fOM?’ld it prioritize refactoring—but there still is a
balance. My rule is a variation on the
camping rule: Always leave the code base healthier than when you found it. It
will never be perfect, but it should be better.

Reorganizing the Calculations by Type

Now I'll turn my attention to the next feature change: supporting more categories
of plays, each with its own charging and volume credits calculations. At the mo-
ment, to make changes here I have to go into the calculation functions and edit
the conditions in there. The amountfor function highlights the central role the type
of play has in the choice of calculations—but conditional logic like this tends to
decay as further modifications are made unless it's reinforced by more structural
elements of the programming language.

There are various ways to introduce structure to make this explicit, but in this
case a natural approach is type polymorphism—a prominent feature of classical
object-orientation. Classical OO has long been a controversial feature in the
JavaScript world, but the ECMAScript 2015 version provides a sound syntax and
structure for it. So it makes sense to use it in a right situation—like this one.

My overall plan is to set up an inheritance hierarchy with comedy and tragedy
subclasses that contain the calculation logic for those cases. Callers call a poly-
morphic amount function that the language will dispatch to the different calcula-
tions for the comedies and tragedies. I'll make a similar structure for the volume
credits calculation. To do this, I utilize a couple of refactorings. The core refactor-
ing is Replace Conditional with Polymorphism (272), which changes a hunk of con-
ditional code with polymorphism. But before I can do Replace Conditional with
Polymorphism (272), I need to create an inheritance structure of some kind. [need
to create a class to host the amount and volume credit functions.

I begin by reviewing the calculation code. (One of the pleasant consequences
of the previous refactoring is that I can now ignore the formatting code, so long
as I produce the same output data structure. I can further support this by adding
tests that probe the intermediate data structure.)

REORGANIZING THE CALCULATIONS BY TYPE

createStatementData.js...

export default function createStatementData(invoice, plays) {
const result = {};
result.customer = invoice.customer;
result.performances = invoice.performances.map(enrichPerformance);
result.totalAmount = totalAmount(result);
result.totalVolumeCredits = totalVolumeCredits(result);
return result;

function enrichPerformance(aPerformance) {
const result = Object.assign({}, aPerformance);
result.play = playFor(result);
result.amount = amountFor(result);
result.volumeCredits = volumeCreditsFor(result);
return result;
}
function playFor(aPerformance) {
return plays[aPerformance.playID]
}
function amountFor(aPerformance) {
let result = 0;
switch (aPerformance.play.type) {
case "tragedy":
result = 40000;
if (aPerformance.audience > 30) {
result += 1000 * (aPerformance.audience - 30);
}
break;
case "comedy":
result = 30000;
if (aPerformance.audience > 20) {
result += 10000 + 500 * (aPerformance.audience - 20);
}
result += 300 * aPerformance.audience;
break;
default:
throw new Error(unknown type: ${aPerformance.play.type});
}
return result;
}
function volumeCreditsFor(aPerformance) {
let result = 0;
result += Math.max(aPerformance.audience - 30, 0);
if ("comedy" === aPerformance.play.type) result += Math.floor(aPerformance.audience / 5);
return result;
}
function totalAmount(data) {
return data.performances
.reduce((total, p) => total + p.amount, 0);

36

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function totalVolumeCredits(data) {
return data.performances
.reduce((total, p) => total + p.volumeCredits, 0);

Creating a Performance Calculator

The enrichPerformance function is the key, since it populates the intermediate data
structure with the data for each performance. Currently, it calls the conditional
functions for amount and volume credits. What I need it to do is call
those functions on a host class. Since that class hosts functions for calculating
data about performances, I'll call it a performance calculator.

function createStatementData. ..
function enrichPerformance(aPerformance) {

const result = Object.assign({}, aPerformance);
result.play = playFor(result);

result.amount = amountFor(result);
result.volumeCredits = volumeCreditsFor(result);
return result;

}
top level...

}

So far, this new object isn't doing anything. I want to move behavior into
it—and I'd like to start with the simplest thing to move, which is the play record.
Strictly, I don't need to do this, as it's not varying polymorphically, but this way
I'll keep all the data transforms in one place, and that consistency will make the
code clearer.

To make this work, I will use Change Function Declaration (124) to pass the
performance’s play into the calculator.

function createStatementData. ..

function enrichPerformance(aPerformance) {
const calculator = new PerformanceCalculator(aPerformance,)
const result = Object.assign({}, aPerformance);
result.play = ;
result.amount = amountFor(result);
result.volumeCredits = volumeCreditsFor(result);
return result;

REORGANIZING THE CALCULATIONS BY TYPE

class PerformanceCalculator...

class PerformanceCalculator {
constructor(aPerformance,) {
this.performance = aPerformance;

}
}

(I'm not saying compile-test-commit all the time any more, as I suspect
you're getting tired of reading it. But I still do it at every opportunity. I do some-
times get tired of doing it—and give mistakes the chance to bite me. Then
I learn and get back into the rhythm.)

Moving Functions into the Calculator

The next bit of logic I move is rather more substantial for calculating the amount
for a performance. I've moved functions around casually while rearranging nested
functions—but this is a deeper change in the context of the function, so I'll step
through the Move Function (198) refactoring. The first part of this refactoring is
to copy the logic over to its new context—the calculator class. Then, I adjust the
code to fit into its new home, changing aPerformance to this.performance and
playFor(aPerformance) to this.play.

class PerformanceCalculator...

get amount() {
let result = 0;
switch (.type) {
case "tragedy":
result = 40000;
if (.audience > 30) {
result += 1000 * (.audience - 30);
}
break;
case "comedy":
result = 30000;
if (.audience > 20) {
result += 10000 + 500 * (.audience - 20);
}
result += 300 * .audience;
break;
default:
throw new Error(unknown type: ${ .type}’);
}
return result;

}

I can compile at this point to check for any compile-time errors. “Compiling”
in my development environment occurs as I execute the code, so what I actually

37

38

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

do is run Babel [babel]. That will be enough to catch any syntax errors in the
new function—but little more than that. Even so, that can be a useful step.

Once the new function fits its home, I take the original function and turn it
into a delegating function so it calls the new function.

function createStatementData. ..
function amountFor(aPerformance) {

}

Now I can compile-test-commit to ensure the code is working properly in its
new home. With that done, I use Inline Function (115) to call the new function
directly (compile-test-commit).

function createStatementData. ..

function enrichPerformance(aPerformance) {
const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
const result = Object.assign({}, aPerformance);
result.play = calculator.play;
result.amount =
result.volumeCredits = volumeCreditsFor(result);
return result;

}
I repeat the same process to move the volume credits calculation.

function createStatementData. ..

function enrichPerformance(aPerformance) {
const calculator = new PerformanceCalculator(aPerformance, playFor(aPerformance));
const result = Object.assign({}, aPerformance);
result.play = calculator.play;
result.amount = calculator.amount;
result.volumeCredits =
return result;

}

class PerformanceCalculator...

get volumeCredits() {
let result = 0;

result += Math.max(.audience - 30, 0);
if ("comedy" === .type) result += Math.floor(.audience / 5);
return result;

}

Making the Performance Calculator Polymorphic

Now that I have the logic in a class, it's time to apply the polymorphism. The
first step is to use Replace Type Code with Subclasses (362) to introduce subclasses
instead of the type code. For this, I need to create subclasses of the performance

REORGANIZING THE CALCULATIONS BY TYPE

calculator and use the appropriate subclass in createPerformanceData. In order to get
the right subclass, I need to replace the constructor call with a function, since
JavaScript constructors can’t return subclasses. So I use Replace Constructor with
Factory Function (334).

function createStatementData. ..
function enrichPerformance(aPerformance) {
const calculator = (aPerformance, playFor(aPerformance));
const result = Object.assign({}, aPerformance);
result.play = calculator.play;
result.amount = calculator.amount;
result.volumeCredits = calculator.volumeCredits;
return result;

}
top level...

return new PerformanceCalculator(aPerformance, aPlay);

}

With that now a function, I can create subclasses of the performance calculator
and get the creation function to select which one to return.

top level...

function createPerformanceCalculator(aPerformance, aPlay) {
switch(aPlay.type) {
case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
default:

throw new Error(unknown type: ${aPlay.type});

}

}

class TragedyCalculator extends PerformanceCalculator {

}

class ComedyCalculator extends PerformanceCalculator {

}

This sets up the structure for the polymorphism, so I can now move on to
Replace Conditional with Polymorphism (272).
I start with the calculation of the amount for tragedies.

class TragedyCalculator...
get amount() {
let result = 40000;
if (this.performance.audience > 30) {
result += 1000 * (this.performance.audience - 30);
}
return result;

}

39

40 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

Just having this method in the subclass is enough to override the superclass
conditional. But if you're as paranoid as I am, you might do this:

class PerformanceCalculator...
get amount() {
let result = 0;
switch (this.play.type) {
case "tragedy":

case "comedy":
result = 30000;
if (this.performance.audience > 20) {

result += 10000 + 500 * (this.performance.audience - 20);

}
result += 300 * this.performance.audience;
break;

default:
throw new Error(unknown type: ${this.play.type}");

}

return result;

}

I could have removed the case for tragedy and let the default branch throw an error.
But I like the explicit throw—and it will only be there for a couple more minutes (which
is why I threw a string, not a better error object).

After a compile-test-commit of that, I move the comedy case down too.

class ComedyCalculator. ..

get amount() {
let result = 30000;
if (this.performance.audience > 20) {
result += 10000 + 500 * (this.performance.audience - 20);

}
result += 300 * this.performance.audience;
return result;

}

I can now remove the superclass amount method, as it should never be called.
But it's kinder to my future self to leave a tombstone.

class PerformanceCalculator...

get amount() {
throw new Error('subclass responsibility');

}

The next conditional to replace is the volume credits calculation. Looking at
the discussion of future categories of plays, I notice that most plays expect to
check if audience is above 30, with only some categories introducing a variation.
So it makes sense to leave the more common case on the superclass as a default,

STATUS: CREATING THE DATA WITH THE POLYMORPHIC CALCULATOR

and let the variations override it as necessary. So I just push down the case for
comedies:

class PerformanceCalculator...

get volumeCredits() {
return Math.max(this.performance.audience - 30, 0);

}

class ComedyCalculator...

get volumeCredits() {
return super.volumeCredits + Math.floor(this.performance.audience / 5);

}

Status: Creating the Data with the Polymorphic
Calculator

Time to reflect on what introducing the polymorphic calculator did to the code.

createStatementData.js

export default function createStatementData(invoice, plays) {
const result = {};
result.customer = invoice.customer;
result.performances = invoice.performances.map(enrichPerformance);
result.totalAmount = totalAmount(result);
result.totalVolumeCredits = totalVolumeCredits(result);
return result;

function enrichPerformance(aPerformance) {
const calculator = createPerformanceCalculator(aPerformance, playFor(aPerformance));
const result = Object.assign({}, aPerformance);
result.play = calculator.play;
result.amount = calculator.amount;
result.volumeCredits = calculator.volumeCredits;
return result;
}
function playFor(aPerformance) {
return plays[aPerformance.playID]
}
function totalAmount(data) {
return data.performances
.reduce((total, p) => total + p.amount, 0);
}
function totalVolumeCredits(data) {
return data.performances
.reduce((total, p) => total + p.volumeCredits, 0);

41

42 CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

function createPerformanceCalculator(aPerformance, aPlay) {
switch(aPlay.type) {
case "tragedy": return new TragedyCalculator(aPerformance, aPlay);
case "comedy" : return new ComedyCalculator(aPerformance, aPlay);
default:
throw new Error(unknown type: ${aPlay.type}");
}
}
class PerformanceCalculator {
constructor(aPerformance, aPlay) {
this.performance = aPerformance;
this.play = aPlay;
}
get amount() {
throw new Error('subclass responsibility');
}
get volumeCredits() {
return Math.max(this.performance.audience - 30, 0);
}
}

class TragedyCalculator extends PerformanceCalculator {
get amount() {
let result = 40000;
if (this.performance.audience > 30) {
result += 1000 * (this.performance.audience - 30);
}
return result;
}
}

class ComedyCalculator extends PerformanceCalculator {
get amount() {
let result = 30000;
if (this.performance.audience > 20) {
result += 10000 + 500 * (this.performance.audience - 20);

}

result += 300 * this.performance.audience;
return result;

}
get volumeCredits() {
return super.volumeCredits + Math.floor(this.performance.audience / 5);

}
}

Again, the code has increased in size as I've introduced structure. The benefit
here is that the calculations for each kind of play are grouped together. If most
of the changes will be to this code, it will be helpful to have it clearly separated
like this. Adding a new kind of play requires writing a new subclass and adding
it to the creation function.

The example gives some insight as to when using subclasses like this is useful.
Here, I've moved the conditional lookup from two functions (amountFor and
volumeCreditsFor) to a single constructor function createPerformanceCalculator. The more

FINAL THOUGHTS

functions there are that depend on the same type of polymorphism, the
more useful this approach becomes.

An alternative to what I've done here would be to have createPerformanceData return
the calculator itself, instead of the calculator populating the intermediate data
structure. One of the nice features of JavaScript’s class system is that with it, using
getters looks like regular data access. My choice on whether to return the instance
or calculate separate output data depends on who is using the downstream data
structure. In this case, I preferred to show how to use the intermediate
data structure to hide the decision to use a polymorphic calculator.

Final Thoughts

This is a simple example, but I hope it will give you a feeling for what refactoring
is like. I've used several refactorings, including Extract Function (106), Inline Variable
(123), Move Function (198), and Replace Conditional with Polymorphism (272).

There were three major stages to this refactoring episode: decomposing the
original function into a set of nested functions, using Split Phase (154) to separate
the calculation and printing code, and finally introducing a polymorphic calculator
for the calculation logic. Each of these added structure to the code, enabling me
to better communicate what the code was doing.

As is often the case with refactoring, the early stages were mostly driven by
trying to understand what was going on. A common sequence is: Read the code,
gain some insight, and use refactoring to move that insight from your head back
into the code. The clearer code then makes it easier to understand it, leading to
deeper insights and a beneficial positive feedback loop. There are still some im-
provements I could make, but I feel I've done enough to pass my test of leaving
the code significantly better than how I found it.

I'm talking about improving the

code—but programmers love to argue The frye test Of gOOd code 1is

about what good code looks like. I know I .o I .
some people object to my preference for ow easy it is to ¢ ange it.

small, well-named functions. If we con-

sider this to be a matter of aesthetics, where nothing is either good or bad but
thinking makes it so, we lack any guide but personal taste. I believe, however,
that we can go beyond taste and say that the true test of good code is how easy
it is to change it. Code should be obvious: When someone needs to make a
change, they should be able to find the code to be changed easily and to make
the change quickly without introducing any errors. A healthy code base maximizes
our productivity, allowing us to build more features for our users both faster and
more cheaply. To keep code healthy, pay attention to what is getting between
the programming team and that ideal, then refactor to get closer to the ideal.

43

44

CHAPTER 1 m REFACTORING: A FIRST EXAMPLE

But the most important thing to learn from this example is the rhythm of
refactoring. Whenever I've shown people how I refactor, they are surprised by
how small my steps are, each step leaving the code in a working state that com-
piles and passes its tests. I was just as surprised myself when Kent Beck showed
me how to do this in a hotel room in Detroit two decades ago. The key to effective
refactoring is recognizing that you go faster when you take tiny steps, the code
is never broken, and you can compose those small steps into substantial changes.
Remember that—and the rest is silence.

Chapter 2

Principles in Refactoring

The example in the previous chapter should have given you a decent feel of what
refactoring is. Now you have that, it's a good time to step back and talk about
some of the broader principles in refactoring.

Defining Refactoring

Like many terms in software development, “refactoring” is often used very
loosely by practitioners. I use the term more precisely, and find it useful to use
it in that more precise form. (These definitions are the same as those I gave in
the first edition of this book.) The term “refactoring” can be used either as a noun
or a verb. The noun’s definition is:

Refactoring (noun): a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its
observable behavior.

This definition corresponds to the named refactorings I've mentioned in the
earlier examples, such as Extract Function (106) and Replace Conditional with
Polymorphism (272).

The verb’s definition is:

Refactoring (verb): to restructure software by applying a series of refactorings
without changing its observable behavior.

So I might spend a couple of hours refactoring, during which I would apply a
few dozen individual refactorings.

Over the years, many people in the industry have taken to use “refactoring” to
mean any kind of code cleanup—but the definitions above point to a particular
approach to cleaning up code. Refactoring is all about applying small behavior-
preserving steps and making a big change by stringing together a sequence of
these behavior-preserving steps. Each individual refactoring is either pretty small

45

46

CHAPTER 2 m PRINCIPLES IN REFACTORING

itself or a combination of small steps. As a result, when I'm refactoring, my code
doesn’t spend much time in a broken state, allowing me to stop at any moment
even if I haven't finished.

I use “restructuring” as a general term

If someone says their code was to mean any kind of reorganizing or

cleaning up of a code base, and see
broken fOT a coup le Of days refactoring as a particular kind of restruc-

while they are refactoring, 10U turing. Refactoring may seem inefficient

to people who first come across it and
can be pretty sure they were watch me making lots of tiny steps, when

not refaCtOV”’lg- a single bigger step would do. But the
tiny steps allow me to go faster because
they compose so well—and, crucially, because I don't spend any time debugging.

In my definitions, I use the phrase “observable behavior.” This is a deliberately
loose term, indicating that the code should, overall, do just the same things it
did before I started. It doesn’t mean it will work exactly the same—for example,
Extract Function (106) will alter the call stack, so performance characteristics might
change—but nothing should change that the user should care about. In particular,
interfaces to modules often change due to such refactorings as Change Function
Declaration (124) and Move Function (198). Any bugs that I notice during refactoring
should still be present after refactoring (though I can fix latent bugs that nobody
has observed yet).

Refactoring is very similar to performance optimization, as both involve carrying
out code manipulations that don't change the overall functionality of the program.
The difference is the purpose: Refactoring is always done to make the code
“easier to understand and cheaper to modify.” This might speed things up or slow
things down. With performance optimization, I only care about speeding up the
program, and am prepared to end up with code that is harder to work with if I
really need that improved performance.

The Two Hats

Kent Beck came up with a metaphor of the two hats. When I use refactoring to
develop software, I divide my time between two distinct activities: adding func-
tionality and refactoring. When I add functionality, I shouldn’t be changing existing
code; I'm just adding new capabilities. I measure my progress by adding tests
and getting the tests to work. When I refactor, I make a point of not adding
functionality; I only restructure the code. I don’t add any tests (unless I find a
case I missed earlier); I only change tests when I have to accommodate a change
in an interface.

As I develop software, I find myself swapping hats frequently. I start by trying
to add a new capability, then I realize this would be much easier if the code were

WHY SHOULD WE REFACTOR?

structured differently. So I swap hats and refactor for a while. Once the code is
better structured, I swap hats back and add the new capability. Once I get the
new capability working, I realize I coded it in a way that’s awkward to understand,
so I swap hats again and refactor. All this might take only ten minutes, but during
this time I'm always aware of which hat I'm wearing and the subtle difference
that makes to how I program.

Why Should We Refactor?

I don't want to claim refactoring is the cure for all software ills. It is no “silver
bullet.” Yet it is a valuable tool—a pair of silver pliers that helps you keep a good
grip on your code. Refactoring is a tool that can—and should—be used for several
purposes.

Refactoring Improves the Design of Software

Without refactoring, the internal design—the architecture—of software tends to
decay. As people change code to achieve short-term goals, often without a full
comprehension of the architecture, the code loses its structure. It becomes harder
for me to see the design by reading the code. Loss of the structure of code has
a cumulative effect. The harder it is to see the design in the code, the harder it
is for me to preserve it, and the more rapidly it decays. Regular refactoring helps
keep the code in shape.

Poorly designed code usually takes more code to do the same things, often
because the code quite literally does the same thing in several places. Thus an
important aspect of improving design is to eliminate duplicated code. It's not that
reducing the amount of code will make the system run any faster—the effect on
the footprint of the programs rarely is significant. Reducing the amount of
code does, however, make a big difference in modification of the code. The
more code there is, the harder it is to modify correctly. There's more code for
me to understand. I change this bit of code here, but the system doesn’t do what
I expect because I didn't change that bit over there that does much the same
thing in a slightly different context. By eliminating duplication, I ensure that the
code says everything once and only once, which is the essence of good design.

Refactoring Makes Software Easier to Understand

Programming is in many ways a conversation with a computer. I write code that
tells the computer what to do, and it responds by doing exactly what I tell it.
In time, I close the gap between what I want it to do and what I tell it to do.
Programming is all about saying exactly what I want. But there are likely to be
other users of my source code. In a few months, a human will try to read my

47

48

CHAPTER 2 m PRINCIPLES IN REFACTORING

code to make some changes. That user, who we often forget, is actually the most
important. Who cares if the computer takes a few more cycles to compile some-
thing? Yet it does matter if it takes a programmer a week to make a change that
would have taken only an hour with proper understanding of my code.

The trouble is that when I'm trying to get the program to work, I'm not thinking
about that future developer. It takes a change of rhythm to make the code easier
to understand. Refactoring helps me make my code more readable. Before
refactoring, I have code that works but is not ideally structured. A little time
spent on refactoring can make the code better communicate its purpose—say
more clearly what I want.

I'm not necessarily being altruistic about this. Often, this future developer is
myself. This makes refactoring even more important. I'm a very lazy programmer.
One of my forms of laziness is that I never remember things about the code I
write. Indeed, I deliberately try not remember anything I can look up, because
I'm afraid my brain will get full. I make a point of trying to put everything I
should remember into the code so I don’t have to remember it. That way I'm
less worried about Maudite [maudite] killing off my brain cells.

Refactoring Helps Me Find Bugs

Help in understanding the code also means help in spotting bugs. I admit I'm
not terribly good at finding bugs. Some people can read a lump of code and see
bugs; I cannot. However, I find that if I refactor code, I work deeply on under-
standing what the code does, and I put that new understanding right back into
the code. By clarifying the structure of the program, I clarify certain assumptions
I've made—to a point where even I can't avoid spotting the bugs.

It reminds me of a statement Kent Beck often makes about himself: “I'm not a
great programmer; I'm just a good programmer with great habits.” Refactoring
helps me be much more effective at writing robust code.

Refactoring Helps Me Program Faster

In the end, all the earlier points come down to this: Refactoring helps me develop
code more quickly.

This sounds counterintuitive. When I talk about refactoring, people can easily
see that it improves quality. Better internal design, readability, reducing bugs—all
these improve quality. But doesn’t the time I spend on refactoring reduce the
speed of development?

When [talk to software developers who have been working on a system for a
while, I often hear that they were able to make progress rapidly at first, but now
it takes much longer to add new features. Every new feature requires more and
more time to understand how to fit it into the existing code base, and once it's
added, bugs often crop up that take even longer to fix. The code base starts
looking like a series of patches covering patches, and it takes an exercise in

WHY SHOULD WE REFACTOR? 49

archaeology to figure out how things work. This burden slows down adding new
features—to the point that developers wish they could start again from a blank
slate.

I can visualize this state of affairs with the following pseudograph:

A
cumulative
functionality

poor design

time

But some teams report a different experience. They find they can add new
features faster because they can leverage the existing things by quickly building
on what’s already there.

cumulative
functionality

poor design

time

The difference between these two is the internal quality of the software. Soft-
ware with a good internal design allows me to easily find how and where I need
to make changes to add a new feature. Good modularity allows me to only have to
understand a small subset of the code base to make a change. If the code is clear,
I'm less likely to introduce a bug, and if I do, the debugging effort is much easier.

50

CHAPTER 2 m PRINCIPLES IN REFACTORING

Done well, my code base turns into a platform for building new features for its
domain.

I refer to this effect as the Design Stamina Hypothesis [mf-dsh]: By putting our
effort into a good internal design, we increase the stamina of the software effort,
allowing us to go faster for longer. I can’t prove that this is the case, which is
why I refer to it as a hypothesis. But it explains my experience, together with the
experience of hundreds of great programmers that I've got to know over my career.

Twenty years ago, the conventional wisdom was that to get this kind of good
design, it had to be completed before starting to program—because once we
wrote the code, we could only face decay. Refactoring changes this picture.
We now know we can improve the design of existing code—so we can form and
improve a design over time, even as the needs of the program change. Since it
is very difficult to do a good design up front, refactoring becomes vital to
achieving that virtuous path of rapid functionality.

When Should We Refactor?

Refactoring is something I do every hour I program. I have noticed a number of
ways it fits into my workflow.

The Rule of Three

Here’s a guideline Don Roberts gave me: The first time you do something,
you just do it. The second time you do something similar, you wince at the
duplication, but you do the duplicate thing anyway. The third time you do
something similar, you refactor.

Or for those who like baseball: Three strikes, then you refactor.

Preparatory Refactoring—Making It Easier to Add a Feature

The best time to refactor is just before I need to add a new feature to the code
base. As I do this, I look at the existing code and, often, see that if it were
structured a little differently, my work would be much easier. Perhaps there’s
function that does almost all that I need, but has some literal values that conflict
with my needs. Without refactoring I might copy the function and change those
values. But that leads to duplicated code—if I need to change it in the future, I'll
have to change both spots (and, worse, find them). And copy-paste won't help
me if [need to make a similar variation for a new feature in the future. So with
my refactoring hat on, I use Parameterize Function (310). Once I've done that, all
I have to do is call the function with the parameters I need.

WHEN SHOULD WE REFACTOR?

“It's like I want to go 100 miles east but instead of just traipsing through the
woods, I'm going to drive 20 miles north to the highway and then I'm going to
g0 100 miles east at three times the speed I could have if I just went straight
there. When people are pushing you to just go straight there, sometimes you need
to say, ‘Wait, I need to check the map and find the quickest route.” The prepara-
tory refactoring does that for me.”

— Jessica Kerr,

https://martinfowler.com/articles/preparatory-refactoring-example.html

The same happens when fixing a bug. Once I've found the cause of the problem,
I see that it would be much easier to fix should I unify the three bits of copied
code causing the error into one. Or perhaps separating some update logic from
queries will make it easier to avoid the tangling that's causing the error. By
refactoring to improve the situation, I also increase the chances that the bug will
stay fixed, and reduce the chances that others will appear in the same crevices
of the code.

Comprehension Refactoring: Making Code Easier to Understand

Before I can change some code, I need to understand what it does. This code
may have been written by me or by someone else. Whenever I have to think to
understand what the code is doing, I ask myself if I can refactor the code to make
that understanding more immediately apparent. I may be looking at some condi-
tional logic that's structured awkwardly. I may have wanted to use some existing
functions but spent several minutes figuring out what they did because they were
named badly.

At that point I have some understanding in my head, but my head isn't a very
good record of such details. As Ward Cunningham puts it, by refactoring I move
the understanding from my head into the code itself. I then test that understanding
by running the software to see if it still works. If I move my understanding into
the code, it will be preserved longer and be visible to my colleagues.

That doesn't just help me in the future—it often helps me right now. Early on,
I do comprehension refactoring on little details. I rename a couple variables now
that I understand what they are, or I chop a long function into smaller parts.
Then, as the code gets clearer, I find I can see things about the design that I
could not see before. Had I not changed the code, I probably never would have
seen these things, because I'm just not clever enough to visualize all these changes
in my head. Ralph Johnson describes these early refactorings as wiping the dirt
off a window so you can see beyond. When I'm studying code, refactoring leads
me to higher levels of understanding that I would otherwise miss. Those who
dismiss comprehension refactoring as useless fiddling with the code don't realize
that by foregoing it they never see the opportunities hidden behind the confusion.

51

https://martinfowler.com/articles/preparatory-refactoring-example.html

52

CHAPTER 2 m PRINCIPLES IN REFACTORING

Litter-Pickup Refactoring

A variation of comprehension refactoring is when I understand what the code is
doing, but realize that it's doing it badly. The logic is unnecessarily convoluted,
or I see functions that are nearly identical and can be replaced by a single param-
eterized function. There’s a bit of a tradeoff here. I don't want to spend a lot of
time distracted from the task I'm currently doing, but I also don't want to leave
the trash lying around and getting in the way of future changes. If it's easy to
change, I'll do it right away. If it's a bit more effort to fix, I might make a note
of it and fix it when I'm done with my immediate task.

Sometimes, of course, it's going to take a few hours to fix, and I have more
urgent things to do. Even then, however, it's usually worthwhile to make it a little
bit better. As the old camping adage says, always leave the camp site cleaner
than when you found it. If I make it a little better each time I pass through the
code, over time it will get fixed. The nice thing about refactoring is that I don't
break the code with each small step—so, sometimes, it takes months to complete
the job but the code is never broken even when I'm part way through it.

Planned and Opportunistic Refactoring

The examples above—preparatory, comprehension, litter-pickup refactoring—are
all opportunistic. I don’t set aside time at the beginning to spend on refactor-
ing—instead, I do refactoring as part of adding a feature or fixing a bug. It's part
of my natural flow of programming. Whether I'm adding a feature or fixing a
bug, refactoring helps me do the immediate task and also sets me up to make
future work easier. This is an important point that's frequently missed. Refactoring
isn’t an activity that’s separated from programming—any more than you set aside
time to write if statements. I don’t put time on my plans to do refactoring; most
refactoring happens while I'm doing other things.

It's also a common error to see refac-

You have to refactor when you toring as something people do to fix past

. mistakes or clean up ugly code. Certainly
run into Mgly code—but excel- you have to refactor when you run into

lent code needs plenty of refac- ugly code, but excellent code needs

: plenty of refactoring too. Whenever I
tormg too. write code, I'm making tradeoffs—how
much do I need to parameterize, where
to draw the lines between functions? The tradeoffs I made correctly for yesterday’s
feature set may no longer be the right ones for the new features I'm adding today.
The advantage is that clean code is easier to refactor when I need to change
those tradeoffs to reflect the new reality.

WHEN SHOULD WE REFACTOR?

“for each desired change, make the change easy (warning: this may be hard),
then make the easy change”

— Kent Beck,

https://twitter.com/kentbeck/status/250733358307500032

For a long time, people thought of writing software as a process of accretion:
To add new features, we should be mostly adding new code. But good developers
know that, often, the fastest way to add a new feature is to change the code to
make it easy to add. Software should thus be never thought of as “done.” As new
capabilities are needed, the software changes to reflect that. Those changes can
often be greater in the existing code than in the new code.

All this doesn’t mean that planned refactoring is always wrong. If a team has
neglected refactoring, it often needs dedicated time to get their code base into a
better state for new features, and a week spent refactoring now can repay itself
over the next couple of months. Sometimes, even with regular refactoring I'll see
a problem area grow to the point when it needs some concerted effort to fix. But
such planned refactoring episodes should be rare. Most refactoring effort should
be the unremarkable, opportunistic kind.

One bit of advice I've heard is to separate refactoring work and new feature
additions into different version-control commits. The big advantage of this is that
they can be reviewed and approved independently. I'm not convinced of this,
however. Too often, the refactorings are closely interwoven with adding new
features, and it's not worth the time to separate them out. This can also remove
the context for the refactoring, making the refactoring commits hard to justify.
Each team should experiment to find what works for them; just remember that
separating refactoring commits is not a self-evident principle—it’s only worthwhile
if it makes life easier.

Long-Term Refactoring

Most refactoring can be completed within a few minutes—hours at most. But
there are some larger refactoring efforts that can take a team weeks to complete.
Perhaps they need to replace an existing library with a new one. Or pull some
section of code out into a component that they can share with another team. Or
fix some nasty mess of dependencies that they had allowed to build up.

Even in such cases, I'm reluctant to have a team do dedicated refactoring. Often,
a useful strategy is to agree to gradually work on the problem over the course
of the next few weeks. Whenever anyone goes near any code that's in the refac-
toring zone, they move it a little way in the direction they want to improve. This
takes advantage of the fact that refactoring doesn't break the code—each small
change leaves everything in a still-working state. To change from one library to
another, start by introducing a new abstraction that can act as an interface
to either library. Once the calling code uses this abstraction, it's much easier

53

https://twitter.com/kentbeck/status/250733358307500032

54

CHAPTER 2 m PRINCIPLES IN REFACTORING

to switch one library for another. (This tactic is called Branch By Abstraction
[mf-bbal.)

Refactoring in a Code Review

Some organizations do regular code reviews; those that don't would do better if
they did. Code reviews help spread knowledge through a development team.
Reviews help more experienced developers pass knowledge to those less experi-
enced. They help more people understand more aspects of a large software system.
They are also very important in writing clear code. My code may look clear to
me but not to my team. That's inevitable—it's hard for people to put themselves
in the shoes of someone unfamiliar with whatever they are working on. Reviews
also give the opportunity for more people to suggest useful ideas. I can only think
of so many good ideas in a week. Having other people contribute makes my life
easier, so I always look for reviews.

I've found that refactoring helps me review someone else’s code. Before I
started using refactoring, I could read the code, understand it to some degree,
and make suggestions. Now, when I come up with ideas, I consider whether they
can be easily implemented then and there with refactoring. If so, I refactor. When
I do it a few times, I can see more clearly what the code looks like with the
suggestions in place. I don't have to imagine what it would be like—I can see it.
As a result, I can come up with a second level of ideas that I would never have
realized had I not refactored.

Refactoring also helps get more concrete results from the code review. Not
only are there suggestions; many suggestions are implemented there and then.
You end up with much more of a sense of accomplishment from the exercise.

How I'd embed refactoring into a code review depends on the nature of the
review. The common pull request model, where a reviewer looks at code without
the original author, doesn't work too well. It's better to have the original author
of the code present because the author can provide context on the code and
fully appreciate the reviewers’ intentions for their changes. I've had my best
experiences with this by sitting one-on-one with the original author, going
through the code and refactoring as we go. The logical conclusion of this style
is pair programming: continuous code review embedded within the process of
programming.

What Do I Tell My Manager?

One of the most common questions I've been asked is, “How to tell a manager
about refactoring?” I've certainly seen places were refactoring has become a dirty
word—with managers (and customers) believing that refactoring is either correcting
errors made earlier, or work that doesn't yield valuable features. This is exacer-
bated by teams scheduling weeks of pure refactoring—especially if what they are

PROBLEMS WITH REFACTORING

really doing is not refactoring but less careful restructuring that causes breakages
in the code base.

To a manager who is genuinely savvy about technology and understands the
design stamina hypothesis, refactoring isn’t hard to justify. Such managers should
be encouraging refactoring on a regular basis and be looking for signs that indicate
a team isn't doing enough. While it does happen that teams do too much
refactoring, it's much rarer than teams not doing enough.

Of course, many managers and customer don’t have the technical awareness
to know how code base health impacts productivity. In these cases I give my
more controversial advice: Don't tell!

Subversive? I don't think so. Software developers are professionals. Our job is
to build effective software as rapidly as we can. My experience is that refactoring
is a big aid to building software quickly. If I need to add a new function and the
design does not suit the change, I find it's quicker to refactor first and then add
the function. If I need to fix a bug, I need to understand how the software
works—and I find refactoring is the fastest way to do this. A schedule-driven
manager wants me to do things the fastest way I can; how I do it is my respon-
sibility. I'm being paid for my expertise in programming new capabilities fast,
and the fastest way is by refactoring—therefore I refactor.

When Should I Not Refactor?

It may sound like I always recommend refactoring—but there are cases when it's
not worthwhile.

If I run across code that is a mess, but I don’t need to modify it, then I don't
need to refactor it. Some ugly code that I can treat as an API may remain ugly.
It's only when I need to understand how it works that refactoring gives me any
benefit.

Another case is when it’s easier to rewrite it than to refactor it. This is a tricky
decision. Often, I can’t tell how easy it is to refactor some code unless I spend
some time trying and thus get a sense of how difficult it is. The decision to
refactor or rewrite requires good judgment and experience, and I can’t really boil
it down into a piece of simple advice.

Problems with Refactoring

Whenever anyone advocates for some technique, tool, or architecture, I always
look for problems. Few things in life are all sunshine and clear skies. You need
to understand the tradeoffs to decide when and where to apply something. I do
think refactoring is a valuable technique—one that should be used more by most
teams. But there are problems associated with it, and it's important to understand
how they manifest themselves and how we can react to them.

55

56

CHAPTER 2 m PRINCIPLES IN REFACTORING

Slowing Down New Features

If you read the previous section, you should already know my response. Although
many people see time spent refactoring as slowing down the development of
new features, the whole purpose of refactoring is to speed things up. But while
this is true, it's also true that the perception of refactoring as slowing things
down is still common—and perhaps the biggest barrier to people doing enough
refactoring.

There is a genuine tradeoff here. I do

The whole Purpose Of refactor_ run into situations where I see a (large-

. St k scale) refactoring that really needs to be
Ing 1S 10 make Us program done, but the new feature I want to add

faster, producing more value is so small that I prefer to add it and
with less (foOT’T. legve the larger refactoring alone. T.hat s
a judgment call—part of my professional
skills as a programmer. I can’t easily
describe, let alone quantify, how I make that tradeoff.

I'm very conscious that preparatory refactoring often makes a change easier,
so I certainly will do it if I see that it makes my new feature easier to implement.
I'm also more inclined to refactor if this is a problem I've seen before—sometimes
it takes me a couple of times seeing some particular ugliness before I decide to
refactor it away. Conversely, 'm more likely to not refactor if it's part of the code
I rarely touch and the cost of the inconvenience isn’'t something I feel very often.
Sometimes, I delay a refactoring because I'm not sure what improvement to do,
although at other times I'll try something as an experiment to see if it makes
things better.

Still, the evidence I hear from my colleagues in the industry is that too little
refactoring is far more prevalent than too much. In other words, most people
should try to refactor more often. You may have trouble telling the difference in
productivity between a healthy and a sickly code base because you haven't had
enough experience of a healthy code base—of the power that comes from easily
combining existing parts into new configurations to quickly enable complicated
new features.

Although it's often managers that are criticized for the counter-productive habit
of squelching refactoring in the name of speed, I've often seen developers do it
to themselves. Sometimes, they think they shouldn't be refactoring even though
their leadership is actually in favor. If you're a tech lead in a team, it's important
to show team members that you value improving the health of a code base. That
judgment I mentioned earlier on whether to refactor or not is something that takes
years of experience to build up. Those with less experience in refactoring need
lots of mentoring to accelerate them through the process.

But I think the most dangerous way that people get trapped is when they try
to justify refactoring in terms of “clean code,” “good engineering practice,” or
similar moral reasons. The point of refactoring isn’t to show how sparkly a code

PROBLEMS WITH REFACTORING

base is—it is purely economic. We refactor because it makes us faster—faster to
add features, faster to fix bugs. It's important to keep that in front of your mind
and in front of communication with others. The economic benefits of refactoring
should always be the driving factor, and the more that is understood by
developers, managers, and customers, the more of the “good design” curve
we'll see.

Code Ownership

Many refactorings involve making changes that affect not just the internals of
a module but its relationships with other parts of a system. If I want to rename a
function, and I can find all the callers to a function, I simply apply Change Function
Declaration (124) and change the declaration and the callers in one change. But
sometimes this simple refactoring isn't possible. Perhaps the calling code is owned
by a different team and I don’t have write access to their repository. Perhaps the
function is a declared API used by my customers—so I can't even tell if it's being
used, let alone by who and how much. Such functions are part of a published
interface—an interface that is used by clients independent of those who declare
the interface.

Code ownership boundaries get in the way of refactoring because I cannot
make the kinds of changes I want without breaking my clients. This doesn't pre-
vent refactoring—I can still do a great deal—but it does impose limitations. When
renaming a function, I need to use Rename Function (124) and to retain the old
declaration as a pass-through to the new one. This complicates the interface—but
it is the price I must pay to avoid breaking my clients. I may be able to mark the
old interface as deprecated and, in time, retire it, but sometimes I have to retain
that interface forever.

Due to these complexities, I recommend against fine-grained strong code
ownership. Some organizations like any piece of code to have a single programmer
as an owner, and only allow that programmer to change it. I've seen a team of
three people operate in such a way that each one published interfaces to the
other two. This led to all sorts of gyrations to maintain interfaces when it would
have been much easier to go into the code base and make the edits. My preference
is to allow team ownership of code—so that anyone in the same team can modify
the team'’s code, even if originally written by someone else. Programmers may
have individual responsibility for areas of a system, but that should imply that
they monitor changes to their area of responsibility, not block them by default.

Such a more permissive ownership scheme can even exist across teams. Some
teams encourage an open-source-like model where people from other teams can
change a branch of their code and send the commit in to be approved. This allows
one team to change the clients of their functions—they can delete the old decla-
rations once their commits to their clients have been accepted. This can often
be a good compromise between strong code ownership and chaotic changes in
large systems.

57

58

CHAPTER 2 m PRINCIPLES IN REFACTORING

Branches

As I write this, a common approach in teams is for each team member to work
on a branch of the code base using a version control system, and do considerable
work on that branch before integrating with a mainline (often called master or
trunk) shared across the team. Often, this involves building a whole feature on
a branch, not integrating into the mainline until the feature is ready to be released
into production. Fans of this approach claim that it keeps the mainline clear of
any in-process code, provides a clear version history of feature additions, and
allows features to be reverted easily should they cause problems.

There are downsides to feature branches like this. The longer I work on an
isolated branch, the harder the job of integrating my work with mainline is going
to be when I'm done. Most people reduce this pain by frequently merging or re-
basing from mainline to my branch. But this doesn't really solve the problem
when several people are working on individual feature branches. I distinguish
between merging and integration. If I merge mainline into my code, this is a one-
way movement—my branch changes but the mainline doesn’t. I use “integrate”
to mean a two-way process that pulls changes from mainline into my branch and
then pushes the result back into mainline, changing both. If Rachel is working
on her branch I don't see her changes until she integrates with mainline; at that
point, I have to merge her changes into my feature branch, which may mean
considerable work. The hard part of this work is dealing with semantic changes.
Modern version control systems can do wonders with merging complex changes to
the program text, but they are blind to the semantics of the code. If I've
changed the name of a function, my version control tool may easily integrate my
changes with Rachel’s. But if, in her branch, she added a call to a function that
I've renamed in mine, the code will fail.

The problem of complicated merges gets exponentially worse as the length of
feature branches increases. Integrating branches that are four weeks old is more
than twice as hard as those that are a couple of weeks old. Many people, therefore,
argue for keeping feature branches short—perhaps just a couple of days. Others,
such as me, want them even shorter than that. This is an approach called Con-
tinuous Integration (CI), also known as Trunk-Based Development. With CI, each
team member integrates with mainline at least once per day. This prevents any
branches diverting too far from each other and thus greatly reduces the complex-
ity of merges. CI doesn’t come for free: It means you use practices to ensure the
mainline is healthy, learn to break large features into smaller chunks, and use
feature toggles (aka feature flags) to switch off any in-process features that can't
be broken down.

Fans of CI like it partly because it reduces the complexity of merges, but the
dominant reason to favor CI is that it's far more compatible with refactoring.
Refactorings often involve making lots of little changes all over the code
base—which are particularly prone to semantic merge conflicts (such as renaming
a widely used function). Many of us have seen feature-branching teams that find

PROBLEMS WITH REFACTORING

refactorings so exacerbate merge problems that they stop refactoring. CI and re-
factoring work well together, which is why Kent Beck combined them in Extreme
Programming.

I'm not saying that you should never use feature branches. If they are sufficiently
short, their problems are much reduced. (Indeed, users of CI usually also use
branches, but integrate them with mainline each day.) Feature branches may be
the right technique for open source projects where you have infrequent commits
from programmers who you don't know well (and thus don’t trust). But in a full-
time development team, the cost that feature branches impose on refactoring is
excessive. Even if you don’t go to full CI, I certainly urge you to integrate
as frequently as possible. You should also consider the objective evidence
[Forsgren et al.] that teams that use CI are more effective in software delivery.

Testing

One of the key characteristics of refactoring is that it doesn’t change the observable
behavior of the program. If I follow the refactorings carefully, I shouldn’t break
anything—but what if I make a mistake? (Or, knowing me, s/if/when.) Mistakes
happen, but they aren’t a problem provided I catch them quickly. Since each
refactoring is a small change, if I break anything, I only have a small change to
look at to find the fault—and if I still can't spot it, I can revert my version control
to the last working version.

The key here is being able to catch an error quickly. To do this, realistically, I
need to be able to run a comprehensive test suite on the code—and run it
quickly, so that I'm not deterred from running it frequently. This means that in
most cases, if | want to refactor, I need to have self-testing code [mf-stc].

To some readers, self-testing code sounds like a requirement so steep as to be
unrealizable. But over the last couple of decades, I've seen many teams build
software this way. It takes attention and dedication to testing, but the benefits
make it really worthwhile. Self-testing code not only enables refactoring—it
also makes it much safer to add new features, since I can quickly find and kill
any bugs I introduce. The key point here is that when a test fails, I can look at the
change I've made between when the tests were last running correctly and
the current code. With frequent test runs, that will be only a few lines of code.
By knowing it was those few lines that caused the failure, I can much more easily
find the bug.

This also answers those who are concerned that refactoring carries too much
risk of introducing bugs. Without self-testing code, that's a reasonable
worry—which is why I put so much emphasis on having solid tests.

There is another way to deal with the testing problem. If I use an environment
that has good automated refactorings, I can trust those refactorings even without
running tests. I can then refactor, providing I only use those refactorings that are
safely automated. This removes a lot of nice refactorings from my menu, but still

59

60

CHAPTER 2 m PRINCIPLES IN REFACTORING

leaves me enough to deliver some useful benefits. I'd still rather have self-testing
code, but it's an option that is useful to have in the toolkit.

This also inspires a style of refactoring that only uses a limited set of refactorings
that can be proven safe. Such refactorings require carefully following the steps,
and are language-specific. But teams using them have found they can do useful
refactoring on large code bases with poor test coverage. I don't focus on that in
this book, as it's a newer, less described and understood technique that involves
detailed, language-specific activity. (It is, however, something I hope talk about
more on my web site in the future. For a taste of it, see Jay Bazuzi's description
[Bazuzi] of a safer way to do Extract Method (106) in C++.)

Self-testing code is, unsurprisingly, closely associated with Continuous
Integration—it is the mechanism that we use to catch semantic integration conflicts.
Such testing practices are another component of Extreme Programming and a
key part of Continuous Delivery.

Legacy Code

Most people would regard a big legacy as a Good Thing—but that’s one of the
cases where programmers’ view is different. Legacy code is often complex, fre-
quently comes with poor tests, and, above all, is written by Someone Else
(shudder).

Refactoring can be a fantastic tool to help understand a legacy system. Functions
with misleading names can be renamed so they make sense, awkward program-
ming constructs smoothed out, and the program turned from a rough rock to a
polished gem. But the dragon guarding this happy tale is the common lack of
tests. If you have a big legacy system with no tests, you can’t safely refactor it
into clarity.

The obvious answer to this problem is that you add tests. But while this sounds
a simple, if laborious, procedure, it’s often much more tricky in practice. Usually, a
system is only easy to put under test if it was designed with testing in mind—in
which case it would have the tests and I wouldn't be worrying about it.

There’s no simple route to dealing with this. The best advice I can give is to
get a copy of Working Effectively with Legacy Code [Feathers] and follow its guidance.
Don’t be worried by the age of the book—its advice is just as true more than a
decade later. To summarize crudely, it advises you to get the system under test
by finding seams in the program where you can insert tests. Creating these seams
involves refactoring—which is much more dangerous since it's done without tests,
but is a necessary risk to make progress. This is a situation where safe, automated
refactorings can be a godsend. If all this sounds difficult, that's because it is.
Sadly, there’s no shortcut to getting out of a hole this deep—which is why I'm
such a strong proponent of writing self-testing code from the start.

PROBLEMS WITH REFACTORING

Even when I do have tests, I don't advocate trying to refactor a complicated
legacy mess into beautiful code all at once. What I prefer to do is tackle it in
relevant pieces. Each time I pass through a section of the code, I try to make it
a little bit better—again, like leaving a camp site cleaner than when I found it. If
this is a large system, I'll do more refactoring in areas I visit frequently—which
is the right thing to do because, if I need to visit code frequently, I'll get a bigger
payoff by making it easier to understand.

Databases

When I wrote the first edition of this book, I said that refactoring databases was
a problem area. But, within a year of the book’s publication, that was no longer
the case. My colleague Pramod Sadalage developed an approach to evolutionary
database design [mf-evodb] and database refactoring [Ambler & Sadalage] that
is now widely used. The essence of the technique is to combine the structural
changes to a database’s schema and access code with data migration scripts that
can easily compose to handle large changes.

Consider a simple example of renaming a field (column). As in Change Function
Declaration (124), I need to find the original declaration of the structure and all
the callers of this structure and change them in a single change. The complication,
however, is that I also have to transform any data that uses the old field to use
the new one. I write a small hunk of code that carries out this transform and
store it in version control, together with the code that changes any declared
structure and access routines. Then, whenever I need to migrate between two
versions of the database, I run all the migration scripts that exist between my
current copy of the database and my desired version.

As with regular refactoring, the key here is that each individual change is small
yet captures a complete change, so the system still runs after applying the migra-
tion. Keeping them small means they are easy to write, but I can string many of
them into a sequence that can make a significant change to the database’s
structure and the data stored in it.

One difference from regular refactorings is that database changes often are
best separated over multiple releases to production. This makes it easy to reverse
any change that causes a problem in production. So, when renaming a field, my
first commit would add the new database field but not use it. I may then set up
the updates so they update both old and new fields at once. I can then gradually
move the readers over to the new field. Only once they have all moved to the
new field, and I've given a little time for any bugs to show themselves, would
I remove the now-unused old field. This approach to database changes is an
example of a general approach of parallel change [mf-pc] (also called expand-
contract).

61

62

CHAPTER 2 m PRINCIPLES IN REFACTORING

Refactoring, Architecture, and Yagni

Refactoring has profoundly changed how people think about software architecture.
Early in my career, I was taught that software design and architecture was
something to be worked on, and mostly completed, before anyone started writing
code. Once the code was written, its architecture was fixed and could only decay
due to carelessness.

Refactoring changes this perspective. It allows me to significantly alter the ar-
chitecture of software that’s been running in production for years. Refactoring
can improve the design of existing code, as this book’s subtitle implies. But as I
indicated earlier, changing legacy code is often challenging, especially when it
lacks decent tests.

The real impact of refactoring on architecture is in how it can be used to form
a well-designed code base that can respond gracefully to changing needs. The
biggest issue with finishing architecture before coding is that such an approach
assumes the requirements for the software can be understood early on. But expe-
rience shows that this is often, even usually, an unachievable goal. Repeatedly,
I saw people only understand what they really needed from software once they'd
had a chance to use it, and saw the impact it made to their work.

One way of dealing with future changes is to put flexibility mechanisms into
the software. As I write some function, I can see that it has a general applicability.
To handle the different circumstances that I anticipate it to be used in, I can see
a dozen parameters I could add to that function. These parameters are flexibility
mechanisms—and, like most mechanisms, they are not a free lunch. Adding all
those parameters complicates the function for the one case it’s used right now.
If I miss a parameter, all the parameterization I have added makes it harder for
me to add more. I find I often get my flexibility mechanisms wrong—either because
the changing needs didn't work out the way I expected or my mechanism design
was faulty. Once I take all that into account, most of the time my flexibility
mechanisms actually slow down my ability to react to change.

With refactoring, I can use a different strategy. Instead of speculating on what
flexibility I will need in the future and what mechanisms will best enable that, I
build software that solves only the currently understood needs, but I make this
software excellently designed for those needs. As my understanding of the users’
needs changes, I use refactoring to adapt the architecture to those new demands.
I can happily include mechanisms that don't increase complexity (such as small,
well-named functions) but any flexibility that complicates the software has to
prove itself before I include it. If I don’t have different values for a parameter
from the callers, I don't add it to the parameter list. Should the time come that
I need to add it, then Parameterize Function (310) is an easy refactoring to apply. I
often find it useful to estimate how hard it would be to use refactoring later to
support an anticipated change. Only if I can see that it would be substantially
harder to refactor later do I consider adding a flexibility mechanism now.

REFACTORING AND THE WIDER SOFTWARE DEVELOPMENT PROCESS

This approach to design goes under various names: simple design, incremental
design, or yagni [mf-yagni] (originally an acronym for “you aren't going to need
it"). Yagni doesn’t imply that architectural thinking disappears, although it is
sometimes naively applied that way. I think of yagni as a different style of incor-
porating architecture and design into the development process—a style that isn't
credible without the foundation of refactoring.

Adopting yagni doesn’t mean I neglect all upfront architectural thinking. There
are still cases where refactoring changes are difficult and some preparatory
thinking can save time. But the balance has shifted a long way—I'm much more
inclined to deal with issues later when I understand them better. All this has led
to a growing discipline of evolutionary architecture [Ford et al.] where architects
explore the patterns and practices that take advantage of our ability to iterate
over architectural decisions.

Refactoring and the Wider Software Development Process

If you've read the earlier section on problems, one lesson you've probably drawn
is that the effectiveness of refactoring is tied to other software practices that a
team uses. Indeed, refactoring’s early adoption was as part of Extreme Program-
ming [mf-xp] (XP), a process which was notable for putting together a set of
relatively unusual and interdependent practices—such as continuous integra-
tion, self-testing code, and refactoring (the latter two woven into test-driven
development).

Extreme Programming was one of the first agile software methods [mf-nm]
and, for several years, led the rise of agile techniques. Enough projects now use
agile methods that agile thinking is generally regarded as mainstream—but in
reality most “agile” projects only use the name. To really operate in an agile way,
a team has to be capable and enthusiastic refactorers—and for that, many aspects
of their process have to align with making refactoring a regular part of their work.

The first foundation for refactoring is self-testing code. By this, I mean that
there is a suite of automated tests that I can run and be confident that, if I made
an error in my programming, some test will fail. This is such an important
foundation for refactoring that I'll spend a chapter talking more about this.

To refactor on a team, it's important that each member can refactor when they
need to without interfering with others” work. This is why I encourage Continuous
Integration. With CI, each member’s refactoring efforts are quickly shared with
their colleagues. No one ends up building new work on interfaces that are being
removed, and if the refactoring is going to cause a problem with someone else’s
work, we know about this quickly. Self-testing code is also a key element of
Continuous Integration, so there is a strong synergy between the three practices
of self-testing code, continuous integration, and refactoring.

63

64

CHAPTER 2 m PRINCIPLES IN REFACTORING

With this trio of practices in place, we enable the Yagni design approach that
I talked about in the previous section. Refactoring and yagni positively reinforce
each other: Not just is refactoring (and its prerequisites) a foundation for
yagni—yagni makes it easier to do refactoring. This is because it's easier to change
a simple system than one that has lots of speculative flexibility included. Balance
these practices, and you can get into a virtuous circle with a code base that
responds rapidly to changing needs and is reliable.

With these core practices in place, we have the foundation to take advantage
of the other elements of the agile mindset. Continuous Delivery keeps our software
in an always-releasable state. This is what allows many web organizations to re-
lease updates many times a day—but even if we don’t need that, it reduces risk
and allows us to schedule our releases to satisfy business needs rather than
technological constraints. With a firm technical foundation, we can drastically
reduce the time it takes to get a good idea into production code, allowing us to
better serve our customers. Furthermore, these practices increase the reliability
of our software, with less bugs to spend time fixing.

Stated like this, it all sounds rather simple—but in practice it isn't. Software
development, whatever the approach, is a tricky business, with complex interac-
tions between people and machines. The approach I describe here is a proven
way to handle this complexity, but like any approach, it requires practice and
skill.

Refactoring and Performance

A common concern with refactoring is the effect it has on the performance of a
program. To make the software easier to understand, I often make changes that
will cause the program to run slower. This is an important issue. I don't belong
to the school of thought that ignores performance in favor of design purity or in
hopes of faster hardware. Software has been rejected for being too slow, and
faster machines merely move the goalposts. Refactoring can certainly make soft-
ware go more slowly—but it also makes the software more amenable to perfor-
mance tuning. The secret to fast software, in all but hard real-time contexts, is
to write tunable software first and then tune it for sufficient speed.

I've seen three general approaches to writing fast software. The most serious
of these is time budgeting, often used in hard real-time systems. As you decom-
pose the design, you give each component a budget for resources—time and
footprint. That component must not exceed its budget, although a mechanism
for exchanging budgeted resources is allowed. Time budgeting focuses attention
on hard performance times. It is essential for systems, such as heart pacemakers,
in which late data is always bad data. This technique is inappropriate for other
kinds of systems, such as the corporate information systems with which I
usually work.

REFACTORING AND PERFORMANCE

The second approach is the constant attention approach. Here, every program-
mer, all the time, does whatever she can to keep performance high. This is a
common approach that is intuitively attractive—but it does not work very well.
Changes that improve performance usually make the program harder to work
with. This slows development. This would be a cost worth paying if the resulting
software were quicker—but usually it is not. The performance improvements are
spread all around the program; each improvement is made with a narrow
perspective of the program’s behavior, and often with a misunderstanding of how
a compiler, runtime, and hardware behaves.

It Takes Awhile to Create Nothing

The Chrysler Comprehensive Compensation pay process was running too
slowly. Although we were still in development, it began to bother us, because
it was slowing down the tests.

Kent Beck, Martin Fowler, and I decided we'd fix it up. While I waited for
us to get together, I was speculating, on the basis of my extensive knowledge
of the system, about what was probably slowing it down. I thought of several
possibilities and chatted with folks about the changes that were probably
necessary. We came up with some really good ideas about what would make
the system go faster.

Then we measured performance using Kent’s profiler. None of the possi-
bilities I had thought of had anything to do with the problem. Instead, we
found that the system was spending half its time creating instances of date.
Even more interesting was that all the instances had the same couple of
values.

When we looked at the date-creation logic, we saw some opportunities
for optimizing how these dates were created. They were all going through
a string conversion even though no external inputs were involved. The code
was just using string conversion for convenience of typing. Maybe we could
optimize that.

Then we looked at how these dates were being used. It turned out that
the huge bulk of them were all creating instances of date range, an object
with a from date and a to date. Looking around little more, we realized that
most of these date ranges were empty!

As we worked with date range, we used the convention that any date
range that ended before it started was empty. It's a good convention and fits
in well with how the class works. Soon after we started using this convention,
we realized that just creating a date range that starts after it ends wasn't
clear code, so we extracted that behavior into a factory method for empty
date ranges.

We had made that change to make the code clearer, but we received an
unexpected payoff. We created a constant empty date range and adjusted

65

66

CHAPTER 2 m PRINCIPLES IN REFACTORING

the factory method to return that object instead of creating it every time.
That change doubled the speed of the system, enough for the tests to be
bearable. It took us about five minutes.

I had speculated with various members of the team (Kent and Martin deny
participating in the speculation) on what was likely wrong with code we
knew very well. We had even sketched some designs for improvements
without first measuring what was going on.

We were completely wrong. Aside from having a really interesting
conversation, we were doing no good at all.

The lesson is: Even if you know exactly what is going on in your system,
measure performance, don't speculate. You'll learn something, and nine times
out of ten, it won't be that you were right!

— Ron Jeffries

The interesting thing about performance is that in most programs, most of their
time is spent in a small fraction of the code. If I optimize all the code equally,
I'll end up with 90 percent of my work wasted because it's optimizing code that
isn’t run much. The time spent making the program fast—the time lost because
of lack of clarity—is all wasted time.

The third approach to performance improvement takes advantage of this
90-percent statistic. In this approach, I build my program in a well-factored
manner without paying attention to performance until I begin a deliberate perfor-
mance optimization exercise. During this performance optimization, I follow a
specific process to tune the program.

I begin by running the program under a profiler that monitors the program
and tells me where it is consuming time and space. This way I can find that small
part of the program where the performance hot spots lie. I then focus on those
performance hot spots using the same optimizations I would use in the constant-
attention approach. But since I'm focusing my attention on a hot spot, I'm getting
much more effect with less work. Even so, I remain cautious. As in refactoring,
I make the changes in small steps. After each step I compile, test, and rerun
the profiler. If 1 haven't improved performance, I back out the change. I
continue the process of finding and removing hot spots until I get the performance
that satisfies my users.

Having a well-factored program helps with this style of optimization in two
ways. First, it gives me time to spend on performance tuning. With well-factored
code, I can add functionality more quickly. This gives me more time to focus on
performance. (Proﬁling ensures I spend that time on the right place.) Second,
with a well-factored program I have finer granularity for my performance analysis.
My profiler leads me to smaller parts of the code, which are easier to tune. With
clearer code, I have a better understanding of my options and of what kind of
tuning will work.

WHERE DID REFACTORING COME FROM?

I've found that refactoring helps me write fast software. It slows the software
in the short term while I'm refactoring, but makes it easier to tune during
optimization. I end up well ahead.

Where Did Refactoring Come From?

I've not succeeded in pinning down the birth of the term “refactoring.” Good
programmers have always spent at least some time cleaning up their code. They
do this because they have learned that clean code is easier to change than complex
and messy code, and good programmers know that they rarely write clean code
the first time around.

Refactoring goes beyond this. In this book, I'm advocating refactoring as a key
element in the whole process of software development. Two of the first people
to recognize the importance of refactoring were Ward Cunningham and Kent
Beck, who worked with Smalltalk from the 1980s onward. Smalltalk is an envi-
ronment that even then was particularly hospitable to refactoring. It is a very
dynamic environment that allows you to quickly write highly functional software.
Smalltalk had a very short compile-link-execute cycle for its time, which made it
easy to change things quickly at a time where overnight compile cycles were not
unknown. It is also object-oriented and thus provides powerful tools for minimiz-
ing the impact of change behind well-defined interfaces. Ward and Kent explored
software development approaches geared to this kind of environment, and their
work developed into Extreme Programming. They realized that refactoring was
important in improving their productivity and, ever since, have been working
with refactoring, applying it to serious software projects and refining it.

Ward and Kent's ideas were a strong influence on the Smalltalk community,
and the notion of refactoring became an important element in the Smalltalk cul-
ture. Another leading figure in the Smalltalk community is Ralph Johnson, a
professor at the University of Illinois at Urbana-Champaign, who is famous as
one of the authors of the “Gang of Four” [gof] book on design patterns. One of
Ralph’s biggest interests is in developing software frameworks. He explored how
refactoring can help develop an efficient and flexible framework.

Bill Opdyke was one of Ralph’s doctoral students and was particularly interested
in frameworks. He saw the potential value of refactoring and saw that it could
be applied to much more than Smalltalk. His background was in telephone switch
development, in which a great deal of complexity accrues over time and changes
are difficult to make. Bill's doctoral research looked at refactoring from a tool
builder’s perspective. Bill was interested in refactorings that would be useful for
C++ framework development; he researched the necessary semantics-preserving
refactorings and showed how to prove they were semantics-preserving and how
a tool could implement these ideas. Bill's doctoral thesis [Opdyke] was the first
substantial work on refactoring.

67

68

CHAPTER 2 m PRINCIPLES IN REFACTORING

I remember meeting Bill at the OOPSLA conference in 1992. We sat in a café
and he told me about his research. I remember thinking, “Interesting, but not
really that important.” Boy, was I wrong!

John Brant and Don Roberts took the refactoring tool ideas much further to
produce the Refactoring Browser, the first refactoring tool, appropriately for the
Smalltalk environment.

And me? I'd always been inclined to clean code, but I'd never considered it to
be that important. Then, I worked on a project with Kent and saw the way he
used refactoring. I saw the difference it made in productivity and quality. That
experience convinced me that refactoring was a very important technique. I was
frustrated, however, because there was no book that I could give to a working
programmer, and none of the experts above had any plans to write such a book.
So, with their help, I did—which led to the first edition of this book.

Fortunately, the concept of refactoring caught on in the industry. The book
sold well, and refactoring entered the vocabulary of most programmers. More
tools appeared, especially for Java. One downside of this popularity has been
people using “refactoring” loosely, to mean any kind of restructuring. Despite
this, however, it has become a mainstream practice.

Automated Refactorings

Perhaps the biggest change to refactoring in the last decade or so is the availabil-
ity of tools that support automated refactoring. If I want to rename a method in
Java and I'm using Intelli] IDEA [intellij] or Eclipse [eclipse] (to mention just
two), I can do it by picking an item off the menu. The tool completes the refac-
toring for me—and I'm usually sufficiently confident in its work that I don't
bother running the test suite.

The first tool that did this was the Smalltalk Refactoring Browser, written by
John Brandt and Don Roberts. The idea took off in the Java community very
rapidly at the beginning of the century. When JetBrains launched their Intelli]
IDEA IDE, automated refactoring was one of the compelling features. IBM followed
suit shortly afterwards with refactoring tools in Visual Age for Java. Visual Age
didn't have a big impact, but much of its capabilities were reimplemented in
Eclipse, including the refactoring support.

Refactoring also came to C#, initially via JetBrains’s Resharper, a plug-in for
Visual Studio. Later on, the Visual Studio team added some refactoring capabilities.

It's now pretty common to find some kind of refactoring support in editors and
tools, although the actual capabilities vary a fair bit. Some of this variation is
due to the tool, some is caused by the limitations of what you can do with auto-
mated refactoring in different languages. I'm not going to analyze the capabilities
of different tools here, but I think it is worth talking a bit about some of the
underlying principles.

AUTOMATED REFACTORINGS

A crude way to automate a refactoring is to do text manipulation, such as a
search/replace to change a name, or some simple reorganizing of code for Extract
Variable (119). This is a very crude approach that certainly can’t be trusted without
rerunning tests. It can, however, be a handy first step. I'll use such macros in
Emacs to speed up my refactoring work when I don’t have more sophisticated
refactorings available to me.

To do refactoring properly, the tool has to operate on the syntax tree of the
code, not on the text. Manipulating the syntax tree is much more reliable to
preserve what the code is doing. This is why at the moment, most refactoring
capabilities are part of powerful IDEs—they use the syntax tree not just for
refactoring but also for code navigation, linting, and the like. This collaboration
between text and syntax tree is what takes them beyond text editors.

Refactoring isn’t just understanding and updating the syntax tree. The tool also
needs to figure out how to rerender the code into text back in the editor view.
All in all, implementing decent refactoring is a challenging programming
exercise—one that I'm mostly unaware of as I gaily use the tools.

Many refactorings are made much safer when applied in a language with static
typing. Consider the simple Rename Function (124). I might have addClient methods
on my Salesman class and on my Server class. I want to rename the one on my
salesman, but it is different in intent from the one on my server, which I don’t
want to rename. Without static typing, the tool will find it difficult to tell whether
any call to addClient is intended for the salesman. In the refactoring browser, it
would generate a list of call sites and I would manually decide which ones to
change. This makes it a nonsafe refactoring that forces me to rerun the tests.
Such a tool is still helpful—but the equivalent operation in Java can be completely
safe and automatic. Since the tool can resolve the method to the correct class
with static typing, I can be confident that the tool changes only the methods it
ought to.

Tools often go further. If I rename a variable, I can be prompted for changes
to comments that use that name. If [use Extract Function (106), the tool spots
some code that duplicates the new function’s body and offers to replace it with
a call. Programming with powerful refactorings like this is a compelling reason
to use an IDE rather than stick with a familiar text editor. Personally I'm a big
user of Emacs, but when working in Java I prefer Intelli] IDEA or Eclipse—in large
part due to the refactoring support.

While sophisticated refactoring tools are almost magical in their ability to
safely refactor code, there are some edge cases where they slip up. Less mature
tools struggle with reflective calls, such as Method.invoke in Java (although more
mature tools handle this quite well). So even with mostly safe refactorings, it's
wise to run the test suite every so often to ensure nothing has gone pear-shaped.
Usually I'm refactoring with a mix of automated and manual refactorings, so I
run my tests often enough.

The power of using the syntax tree to analyze and refactor programs is a
compelling advantage for IDEs over simple text editors, but many programmers

69

70

CHAPTER 2 m PRINCIPLES IN REFACTORING

prefer the flexibility of their favorite text editor and would like to have
both. A technology that's currently gaining momentum is Language Servers
[langserver]: software that will form a syntax tree and present an API to text
editors. Such language servers can support many text editors and provide
commands to do sophisticated code analysis and refactoring operations.

Going Further

It seems a little strange to be talking about further reading in only the second
chapter, but this is as good a spot as any to point out there is more material out
there on refactoring that goes beyond the basics in this book.

This book has taught refactoring to many people, but I have focused more on
a refactoring reference than on taking readers through the learning process. If
you are looking for such a book, I suggest Bill Wake's Refactoring Workbook [Wake]
that contains many exercises to practice refactoring.

Many of those who pioneered refactoring were also active in the software
patterns community. Josh Kerievsky tied these two worlds closely together with
Refactoring to Patterns [Kerievsky], which looks at the most valuable patterns from
the hugely influential “Gang of Four” book [gof] and shows how to use refactoring
to evolve towards them.

This book concentrates on refactoring in general-purpose programming, but
refactoring also applies in specialized areas. Two that have got useful attention
are Refactoring Databases [Ambler & Sadalage] (by Scott Ambler and Pramod
Sadalage) and Refactoring HTML [Harold] (by Elliotte Rusty Harold).

Although it doesn’t have refactoring in the title, also worth including is Michael
Feathers's Working Effectively with Legacy Code [Feathers], which is primarily a
book about how to think about refactoring an older codebase with poor test
coverage.

Although this book (and its predecessor) are intended for programmers with
any language, there is a place for language-specific refactoring books. Two of my
former colleagues, Jay Fields and Shane Harvey, did this for the Ruby programming
language [Fields et al.].

For more up-to-date material, look up the web representation of this book, as
well as the main refactoring web site: refactoring.com [ref.com].

http://refactoring.com
http://ref.com

Chapter 3

Bad Smells in Code

by Kent Beck and Martin Fowler

“If it stinks, change it.”
— Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you
know how doesn’t mean you know when. Deciding when to start refactoring—and
when to stop—is just as important to refactoring as knowing how to operate the
mechanics of it.

Now comes the dilemma. It is easy to explain how to delete an instance variable
or create a hierarchy. These are simple matters. Trying to explain when you should
do these things is not so cut-and-dried. Instead of appealing to some vague notion
of programming aesthetics (which, frankly, is what we consultants usually do), I
wanted something a bit more solid.

When I was writing the first edition of this book, I was mulling over this issue
as I visited Kent Beck in Zurich. Perhaps he was under the influence of the odors
of his newborn daughter at the time, but he had come up with the notion of
describing the “when” of refactoring in terms of smells.

“Smells,” you say, “and that is supposed to be better than vague aesthetics?”
Well, yes. We have looked at lots of code, written for projects that span the gamut
from wildly successful to nearly dead. In doing so, we have learned to look for
certain structures in the code that suggest—sometimes, scream for—the possibility
of refactoring. (We are switching over to “we” in this chapter to reflect the fact
that Kent and I wrote this chapter jointly. You can tell the difference because the
funny jokes are mine and the others are his.)

One thing we won't try to give you is precise criteria for when a refactoring is
overdue. In our experience, no set of metrics rivals informed human intuition.
What we will do is give you indications that there is trouble that can be solved
by a refactoring. You will have to develop your own sense of how many instance
variables or how many lines of code in a method are too many.

Use this chapter and the table on the inside back cover as a way to give you
inspiration when you're not sure what refactorings to do. Read the chapter (or

71

72

CHAPTER 3 m BAD SMELLS IN CODE

skim the table) and try to identify what it is you're smelling, then go to the re-
factorings we suggest to see whether they will help you. You may not find the
exact smell you can detect, but hopefully it should point you in the right direction.

Mysterious Name

Puzzling over some text to understand what’s going on is a great thing if you're
reading a detective novel, but not when you're reading code. We may fantasize
about being International Men of Mystery, but our code needs to be mundane
and clear. One of the most important parts of clear code is good names, so we
put a lot of thought into naming functions, modules, variables, classes, so they
clearly communicate what they do and how to use them.

Sadly, however, naming is one of the two hard things [mf-2h] in programming.
So, perhaps the most common refactorings we do are the renames: Change Function
Declaration (124) (to rename a function), Rename Variable (137), and Rename Field
(244). People are often afraid to rename things, thinking it's not worth the trouble,
but a good name can save hours of puzzled incomprehension in the future.

Renaming is not just an exercise in changing names. When you can’t think of
a good name for something, it's often a sign of a deeper design malaise. Puzzling
over a tricky name has often led us to significant simplifications to our code.

Duplicated Code

If you see the same code structure in more than one place, you can be sure that
your program will be better if you find a way to unify them. Duplication means
that every time you read these copies, you need to read them carefully to see if
there’s any difference. If you need to change the duplicated code, you have to
find and catch each duplication.

The simplest duplicated code problem is when you have the same expression
in two methods of the same class. Then all you have to do is Extract Function
(106) and invoke the code from both places. If you have code that’s similar, but
not quite identical, see if you can use Slide Statements (223) to arrange the code
so the similar items are all together for easy extraction. If the duplicate fragments
are in subclasses of a common base class, you can use Pull Up Method (350) to
avoid calling one from another.

LONG FUNCTION

Long Function

In our experience, the programs that live best and longest are those with short
functions. Programmers new to such a code base often feel that no computation
ever takes place—that the program is an endless sequence of delegation. When
you have lived with such a program for a few years, however, you learn just how
valuable all those little functions are. All of the payoffs of indirection—explanation,
sharing, and choosing—are supported by small functions.

Since the early days of programming, people have realized that the longer a
function is, the more difficult it is to understand. Older languages carried an
overhead in subroutine calls, which deterred people from small functions. Modern
languages have pretty much eliminated that overhead for in-process calls. There
is still overhead for the reader of the code because you have to switch context
to see what the function does. Development environments that allow you to
quickly jump between a function call and its declaration, or to see both functions
at once, help eliminate this step, but the real key to making it easy to understand
small functions is good naming. If you have a good name for a function, you
mostly don't need to look at its body.

The net effect is that you should be much more aggressive about decomposing
functions. A heuristic we follow is that whenever we feel the need to comment
something, we write a function instead. Such a function contains the code that
we wanted to comment but is named after the intention of the code rather than
the way it works. We may do this on a group of lines or even on a single line of
code. We do this even if the method call is longer than the code it replaces—
provided the method name explains the purpose of the code. The key here is
not function length but the semantic distance between what the method does
and how it does it.

Ninety-nine percent of the time, all you have to do to shorten a function is
Extract Function (106). Find parts of the function that seem to go nicely together
and make a new one.

If you have a function with lots of parameters and temporary variables, they
get in the way of extracting. If you try to use Extract Function (106), you end up
passing so many parameters to the extracted method that the result is scarcely
more readable than the original. You can often use Replace Temp with Query (178)
to eliminate the temps. Long lists of parameters can be slimmed down with
Introduce Parameter Object (140) and Preserve Whole Object (319).

If you've tried that and you still have too many temps and parameters, it's time
to get out the heavy artillery: Replace Function with Command (337).

How do you identify the clumps of code to extract? A good technique is to
look for comments. They often signal this kind of semantic distance. A block of
code with a comment that tells you what it is doing can be replaced by a method
whose name is based on the comment. Even a single line is worth extracting if
it needs explanation.

73

74

CHAPTER 3 m BAD SMELLS IN CODE

Conditionals and loops also give signs for extractions. Use Decompose Conditional
(260) to deal with conditional expressions. A big switch statement should have
its legs turned into single function calls with Extract Function (106). If there’s more
than one switch statement switching on the same condition, you should apply
Replace Conditional with Polymorphism (272).

With loops, extract the loop and the code within the loop into its own method.
If you find it hard to give an extracted loop a name, that may be because it's
doing two different things—in which case don't be afraid to use Split Loop (227)
to break out the separate tasks.

Long Parameter List

In our early programming days, we were taught to pass in as parameters every-
thing needed by a function. This was understandable because the alternative was
global data, and global data quickly becomes evil. But long parameter lists are
often confusing in their own right.

If you can obtain one parameter by asking another parameter for it, you can
use Replace Parameter with Query (324) to remove the second parameter. Rather
than pulling lots of data out of an existing data structure, you can use Preserve
Whole Object (319) to pass the original data structure instead. If several parameters
always fit together, combine them with Introduce Parameter Object (140). If a pa-
rameter is used as a flag to dispatch different behavior, use Remove Flag Argument
(314).

Classes are a great way to reduce parameter list sizes. They are particularly
useful when multiple functions share several parameter values. Then, you can
use Combine Functions into Class (144) to capture those common values as fields.
If we put on our functional programming hats, we’d say this creates a set of
partially applied functions.

Global Data

Since our earliest days of writing software, we were warned of the perils of
global data—how it was invented by demons from the fourth plane of hell, which
is the resting place of any programmer who dares to use it. And, although we
are somewhat skeptical about fire and brimstone, it’s still one of the most pungent
odors we are likely to run into. The problem with global data is that it can be
modified from anywhere in the code base, and there’s no mechanism to discover
which bit of code touched it. Time and again, this leads to bugs that breed from
a form of spooky action from a distance—and it's very hard to find out where the
errant bit of program is. The most obvious form of global data is global variables,
but we also see this problem with class variables and singletons.

MUTABLE DATA

Our key defense here is Encapsulate Variable (132), which is always our first
move when confronted with data that is open to contamination by any part of a
program. At least when you have it wrapped by a function, you can start seeing
where it's modified and start to control its access. Then, it's good to limit its
scope as much as possible by moving it within a class or module where only that
module’s code can see it.

Global data is especially nasty when it's mutable. Global data that you can
guarantee never changes after the program starts is relatively safe—if you have
a language that can enforce that guarantee.

Global data illustrates Paracelsus’s maxim: The difference between a poison
and something benign is the dose. You can get away with small doses of global
data, but it gets exponentially harder to deal with the more you have. Even with
little bits, we like to keep it encapsulated—that’s the key to coping with changes
as the software evolves.

Mutable Data

Changes to data can often lead to unexpected consequences and tricky bugs. I
can update some data here, not realizing that another part of the software expects
something different and now fails—a failure that’s particularly hard to spot if it
only happens under rare conditions. For this reason, an entire school of software
development—functional programming—is based on the notion that data should
never change and that updating a data structure should always return a new copy
of the structure with the change, leaving the old data pristine.

These kinds of languages, however, are still a relatively small part of program-
ming; many of us work in languages that allow variables to vary. But this doesn’t
mean we should ignore the advantages of immutability—there are still many
things we can do to limit the risks on unrestricted data updates.

You can use Encapsulate Variable (132) to ensure that all updates occur through
narrow functions that can be easier to monitor and evolve. If a variable is being
updated to store different things, use Split Variable (240) both to keep them sepa-
rate and avoid the risky update. Try as much as possible to move logic out of
code that processes the update by using Slide Statements (223) and Extract Function
(106) to separate the side-effect-free code from anything that performs the update.
In APIs, use Separate Query from Modifier (306) to ensure callers don't need to call
code that has side effects unless they really need to. We like to use Remove Setting
Method (331) as soon as we can—sometimes, just trying to find clients of a setter
helps spot opportunities to reduce the scope of a variable.

Mutable data that can be calculated elsewhere is particularly pungent. It's not
just a rich source of confusion, bugs, and missed dinners at home—it’s also
unnecessary. We spray it with a concentrated solution of vinegar and Replace
Derived Variable with Query (248).

75

76

CHAPTER 3 m BAD SMELLS IN CODE

Mutable data isn't a big problem when it's a variable whose scope is just a
couple of lines—but its risk increases as its scope grows. Use Combine Functions
into Class (144) or Combine Functions into Transform (149) to limit how much code
needs to update a variable. If a variable contains some data with internal structure,
it's usually better to replace the entire structure rather than modify it in place,
using Change Reference to Value (252).

Divergent Change

We structure our software to make change easier; after all, software is meant to
be soft. When we make a change, we want to be able to jump to a single clear
point in the system and make the change. When you can’t do this, you are
smelling one of two closely related pungencies.

Divergent change occurs when one module is often changed in different ways
for different reasons. If you look at a module and say, “Well, I will have to change
these three functions every time I get a new database; I have to change these
four functions every time there is a new financial instrument,” this is an indication
of divergent change. The database interaction and financial processing problems
are separate contexts, and we can make our programming life better by moving
such contexts into separate modules. That way, when we have a change to one
context, we only have to understand that one context and ignore the other. We
always found this to be important, but now, with our brains shrinking with age,
it becomes all the more imperative. Of course, you often discover this only after
you've added a few databases or financial instruments; context boundaries are
usually unclear in the early days of a program and continue to shift as a software
system’s capabilities change.

If the two aspects naturally form a sequence—for example, you get data from
the database and then apply your financial processing on it—then Split Phase (154)
separates the two with a clear data structure between them. If there’s more back-
and-forth in the calls, then create appropriate modules and use Move Function
(198) to divide the processing up. If functions mix the two types of processing
within themselves, use Extract Function (106) to separate them before moving. If
the modules are classes, then Extract Class (182) helps formalize how to do the
split.

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff this
when, every time you make a change, you have to make a lot of little edits to a

FEATURE ENVY

lot of different classes. When the changes are all over the place, they are hard
to find, and it's easy to miss an important change.

In this case, you want to use Move Function (198) and Move Field (207) to put
all the changes into a single module. If you have a bunch of functions operating
on similar data, use Combine Functions into Class (144). If you have functions that
are transforming or enriching a data structure, use Combine Functions into Transform
(149). Split Phase (154) is often useful here if the common functions can combine
their output for a consuming phase of logic.

A useful tactic for shotgun surgery is to use inlining refactorings, such as Inline
Function (115) or Inline Class (186), to pull together poorly separated logic. You'll
end up with a Long Method or a Large Class, but can then use extractions to
break it up into more sensible pieces. Even though we are inordinately fond of
small functions and classes in our code, we aren't afraid of creating something
large as an intermediate step to reorganization.

Feature Envy

When we modularize a program, we are trying to separate the code into zones
to maximize the interaction inside a zone and minimize interaction between
zones. A classic case of Feature Envy occurs when a function in one module
spends more time communicating with functions or data inside another mod-
ule than it does within its own module. We've lost count of the times we've seen
a function invoking half-a-dozen getter methods on another object to calculate
some value. Fortunately, the cure for that case is obvious: The function clearly
wants to be with the data, so use Move Function (198) to get it there. Sometimes,
only a part of a function suffers from envy, in which case use Extract Function
(106) on the jealous bit, and Move Function (198) to give it a dream home.

Of course not all cases are cut-and-dried. Often, a function uses features of
several modules, so which one should it live with? The heuristic we use is to
determine which module has most of the data and put the function with that
data. This step is often made easier if you use Extract Function (106) to break the
function into pieces that go into different places.

Of course, there are several sophisticated patterns that break this rule. From
the Gang of Four [gof], Strategy and Visitor immediately leap to mind. Kent
Beck’s Self Delegation [Beck SBPP] is another. Use these to combat the diver-
gent change smell. The fundamental rule of thumb is to put things together that
change together. Data and the behavior that references that data usually change
together—but there are exceptions. When the exceptions occur, we move the
behavior to keep changes in one place. Strategy and Visitor allow you to
change behavior easily because they isolate the small amount of behavior that
needs to be overridden, at the cost of further indirection.

77

78

CHAPTER 3 m BAD SMELLS IN CODE

Data Clumps

Data items tend to be like children: They enjoy hanging around together. Often,
you'll see the same three or four data items together in lots of places: as fields
in a couple of classes, as parameters in many method signatures. Bunches of data
that hang around together really ought to find a home together. The first step
is to look for where the clumps appear as fields. Use Extract Class (182) on the
fields to turn the clumps into an object. Then turn your attention to method
signatures using Introduce Parameter Object (140) or Preserve Whole Object (319) to
slim them down. The immediate benefit is that you can shrink a lot of parameter
lists and simplify method calling. Don't worry about data clumps that use only
some of the fields of the new object. As long as you are replacing two or more
fields with the new object, you'll come out ahead.

A good test is to consider deleting one of the data values. If you did this, would
the others make any sense? If they don't, it's a sure sign that you have an object
that’s dying to be born.

You'll notice that we advocate creating a class here, not a simple record struc-
ture. We do this because using a class gives you the opportunity to make a nice
perfume. You can now look for cases of feature envy, which will suggest behavior
that can be moved into your new classes. We've often seen this as a powerful
dynamic that creates useful classes and can remove a lot of duplication and ac-
celerate future development, allowing the data to become productive members
of society.

Primitive Obsession

Most programming environments are built on a widely used set of primitive
types: integers, floating point numbers, and strings. Libraries may add some ad-
ditional small objects such as dates. We find many programmers are curiously
reluctant to create their own fundamental types which are useful for their
domain—such as money, coordinates, or ranges. We thus see calculations that
treat monetary amounts as plain numbers, or calculations of physical quantities
that ignore units (adding inches to millimeters), or lots of code doing if (a < upper
& a > lower).

Strings are particularly common petri dishes for this kind of odor: A telephone
number is more than just a collection of characters. If nothing else, a proper type
can often include consistent display logic for when it needs to be displayed in a
user interface. Representing such types as strings is such a common stench that
people call them “stringly typed” variables.

Loors

You can move out of the primitive cave into the centrally heated world of
meaningful types by using Replace Primitive with Object (174). If the primitive is a
type code controlling conditional behavior, use Replace Type Code with Subclasses
(362) followed by Replace Conditional with Polymorphism (272).

Groups of primitives that commonly appear together are data clumps and
should be civilized with Extract Class (182) and Introduce Parameter Object (140).

Repeated Switches

Talk to a true object-oriented evangelist and they’ll soon get onto the evils of
switch statements. They'll argue that any switch statement you see is begging for
Replace Conditional with Polymorphism (272). We've even heard some people argue
that all conditional logic should be replaced with polymorphism, tossing most
ifs into the dustbin of history.

Even in our more wild-eyed youth, we were never unconditionally opposed to
the conditional. Indeed, the first edition of this book had a smell entitled “switch
statements.” The smell was there because in the late 90’s we found polymorphism
sadly underappreciated, and saw benefit in getting people to switch over.

These days there is more polymorphism about, and it isn't the simple red flag
that it often was fifteen years ago. Furthermore, many languages support more
sophisticated forms of switch statements that use more than some primitive code
as their base. So we now focus on the repeated switch, where the same condi-
tional switching logic (either in a switch/case statement or in a cascade of if/else
statements) pops up in different places. The problem with such duplicate
switches is that, whenever you add a clause, you have to find all the switches
and update them. Against the dark forces of such repetition, polymorphism
provides an elegant weapon for a more civilized codebase.

Loops

Loops have been a core part of programming since the earliest languages. But we
feel they are no more relevant today than bell-bottoms and flock wallpaper.
We disdained them at the time of the first edition—but Java, like most other
languages at the time, didn't provide a better alternative. These days, however,
first-class functions are widely supported, so we can use Replace Loop with Pipeline
(231) to retire those anachronisms. We find that pipeline operations, such as
filter and map, help us quickly see the elements that are included in the processing
and what is done with them.

79

80

CHAPTER 3 m BAD SMELLS IN CODE

Lazy Element

We like using program elements to add structure—providing opportunities for
variation, reuse, or just having more helpful names. But sometimes the structure
isn't needed. It may be a function that's named the same as its body code reads,
or a class that is essentially one simple function. Sometimes, this reflects a function
that was expected to grow and be popular later, but never realized its dreams.
Sometimes, it's a class that used to pay its way, but has been downsized with
refactoring. Either way, such program elements need to die with dignity. Usually
this means using Inline Function (115) or Inline Class (186). With inheritance, you
can use Collapse Hierarchy (380).

Speculative Generality

Brian Foote suggested this name for a smell to which we are very sensitive. You
get it when people say, “Oh, I think we'll need the ability to do this kind of thing
someday” and thus add all sorts of hooks and special cases to handle things that
aren’t required. The result is often harder to understand and maintain. If all this
machinery were being used, it would be worth it. But if it isn't, it isn't. The ma-
chinery just gets in the way, so get rid of it.

If you have abstract classes that aren’t doing much, use Collapse Hierarchy (380).
Unnecessary delegation can be removed with Inline Function (115) and Inline Class
(186). Functions with unused parameters should be subject to Change Function
Declaration (124) to remove those parameters. You should also apply Change
Function Declaration (124) to remove any unneeded parameters, which often get
tossed in for future variations that never come to pass.

Speculative generality can be spotted when the only users of a function or class
are test cases. If you find such an animal, delete the test case and apply Remove
Dead Code (237).

Temporary Field

Sometimes you see a class in which a field is set only in certain circumstances.
Such code is difficult to understand, because you expect an object to need all of
its fields. Trying to understand why a field is there when it doesn’t seem to be
used can drive you nuts.

Use Extract Class (182) to create a home for the poor orphan variables. Use
Mouve Function (198) to put all the code that concerns the fields into this new class.

MIDDLE MAN

You may also be able to eliminate conditional code by using Introduce Special Case
(289) to create an alternative class for when the variables aren’t valid.

Message Chains

You see message chains when a client asks one object for another object, which
the client then asks for yet another object, which the client then asks for yet an-
other another object, and so on. You may see these as a long line of getThis
methods, or as a sequence of temps. Navigating this way means the client is
coupled to the structure of the navigation. Any change to the intermediate
relationships causes the client to have to change.

The move to use here is Hide Delegate (189). You can do this at various points
in the chain. In principle, you can do this to every object in the chain, but doing
this often turns every intermediate object into a middle man. Often, a better al-
ternative is to see what the resulting object is used for. See whether you can use
Extract Function (106) to take a piece of the code that uses it and then Move
Function (198) to push it down the chain. If several clients of one of the objects
in the chain want to navigate the rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known
for our calm, reasoned moderation. Well, at least in this case we are.

Middle Man

One of the prime features of objects is encapsulation—hiding internal details from
the rest of the world. Encapsulation often comes with delegation. You ask a di-
rector whether she is free for a meeting; she delegates the message to her diary
and gives you an answer. All well and good. There is no need to know whether
the director uses a diary, an electronic gizmo, or a secretary to keep track of her
appointments.

¢ However, this can go too far. You look at a class’s interface and find half the
methods are delegating to this other class. After a while, it is time to use Remove
Middle Man (192) and talk to the object that really knows what's going on. If only
a few methods aren’t doing much, use Inline Function (115) to inline them into
the caller. If there is additional behavior, you can use Replace Superclass with
Delegate (399) or Replace Subclass with Delegate (381) to fold the middle man into
the real object. That allows you to extend behavior without chasing all that
delegation.

81

82

CHAPTER 3 m BAD SMELLS IN CODE

Insider Trading

Software people like strong walls between their modules and complain bitterly
about how trading data around too much increases coupling. To make things
work, some trade has to occur, but we need to reduce it to a minimum and keep
it all above board.

Modules that whisper to each other by the coffee machine need to be separated
by using Move Function (198) and Move Field (207) to reduce the need to chat. If
modules have common interests, try to create a third module to keep that
commonality in a well-regulated vehicle, or use Hide Delegate (189) to make another
module act as an intermediary.

Inheritance can often lead to collusion. Subclasses are always going to know
more about their parents than their parents would like them to know. If it's time
to leave home, apply Replace Subclass with Delegate (381) or Replace Superclass with
Delegate (399).

Large Class

When a class is trying to do too much, it often shows up as too many fields. When
a class has too many fields, duplicated code cannot be far behind.

You can Extract Class (182) to bundle a number of the variables. Choose vari-
ables to go together in the component that makes sense for each. For example,
“depositAmount” and “depositCurrency” are likely to belong together in a compo-
nent. More generally, common prefixes or suffixes for some subset of the variables
in a class suggest the opportunity for a component. If the component makes
sense with inheritance, you'll find Extract Superclass (375) or Replace Type Code
with Subclasses (362) (which essentially is extracting a subclass) are often easier.

Sometimes a class does not use all of its fields all of the time. If so, you may
be able to do these extractions many times.

As with a class with too many instance variables, a class with too much code
is a prime breeding ground for duplicated code, chaos, and death. The simplest
solution (have we mentioned that we like simple solutions?) is to eliminate re-
dundancy in the class itself. If you have five hundred-line methods with lots of
code in common, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

The clients of such a class are often the best clue for splitting up the class.
Look at whether clients use a subset of the features of the class. Each subset is
a possible separate class. Once you've identified a useful subset, use Extract Class
(182), Extract Superclass (375), or Replace Type Code with Subclasses (362) to break
it out.

REFUSED BEQUEST

Alternative Classes with Different Interfaces

One of the great benefits of using classes is the support for substitution, allow-
ing one class to swap in for another in times of need. But this only works if their
interfaces are the same. Use Change Function Declaration (124) to make functions
match up. Often, this doesn’t go far enough; keep using Move Function (198) to
move behavior into classes until the protocols match. If this leads to duplication,
you may be able to use Extract Superclass (375) to atone.

Data Class

These are classes that have fields, getting and setting methods for the fields, and
nothing else. Such classes are dumb data holders and are often being manipulated
in far too much detail by other classes. In some stages, these classes may have
public fields. If so, you should immediately apply Encapsulate Record (162) before
anyone notices. Use Remove Setting Method (331) on any field that should not be
changed.

Look for where these getting and setting methods are used by other classes.
Try to use Move Function (198) to move behavior into the data class. If you can't
move a whole function, use Extract Function (106) to create a function that can
be moved.

Data classes are often a sign of behavior in the wrong place, which means you
can make big progress by moving it from the client into the data class itself. But
there are exceptions, and one of the best exceptions is a record that’s being used
as a result record from a distinct function invocation. A good example of this is
the intermediate data structure after you've applied Split Phase (154). A key
characteristic of such a result record is that it's immutable (at least in practice).
Immutable fields don't need to be encapsulated and information derived
from immutable data can be represented as fields rather than getting methods.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they
don’t want or need what they are given? They are given all these great gifts and
pick just a few to play with.

The traditional story is that this means the hierarchy is wrong. You need to
create a new sibling class and use Push Down Method (359) and Push Down Field
(361) to push all the unused code to the sibling. That way the parent holds only
what is common. Often, you'll hear advice that all superclasses should be abstract.

83

84

CHAPTER 3 m BAD SMELLS IN CODE

You'll guess from our snide use of “traditional” that we aren’t going to advise
this—at least not all the time. We do subclassing to reuse a bit of behavior all
the time, and we find it a perfectly good way of doing business. There is a
smell—we can’t deny it—but usually it isn’t a strong smell. So, we say that if the
refused bequest is causing confusion and problems, follow the traditional advice.
However, don't feel you have to do it all the time. Nine times out of ten this
smell is too faint to be worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing behavior
but does not want to support the interface of the superclass. We don’t mind re-
fusing implementations—but refusing interface gets us on our high horses. In this
case, however, don't fiddle with the hierarchy; you want to gut it by applying
Replace Subclass with Delegate (381) or Replace Superclass with Delegate (399).

Comments

Don’t worry, we aren't saying that people shouldn't write comments. In our olfac-
tory analogy, comments aren't a bad smell; indeed they are a sweet smell. The
reason we mention comments here is that comments are often used as a deodor-
ant. It's surprising how often you look at thickly commented code and notice
that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we've discussed
in the rest of this chapter. Our first action is to remove the bad smells by refac-
toring. When we're finished, we often find that the comments are superfluous.

If you need a comment to explain what a block of code does, try Extract Function
(106). If the method is already extracted but you still need a comment to explain
what it does, use Change Function Declaration (124) to rename it. If you need to
state some rules about the required state of the system, use Introduce Assertion
(302).

A good time to use a comment is

When you feel the need to when you don't know what to do. In

it £ first try t addition to describing what is going on,
write a comment, ﬁTS TV L0 comments can indicate areas in which

refactor the code so that (i1l you aren't sure. A comment can also ex-

plain why you did something. This kind
comment becomes supeiﬂuous. of information helps future modifiers,

especially forgetful ones.

Chapter 4

Building Tests

Refactoring is a valuable tool, but it can’t come alone. To do refactoring properly,
I need a solid suite of tests to spot my inevitable mistakes. Even with automated
refactoring tools, many of my refactorings will still need checking via a test suite.

I don't find this to be a disadvantage. Even without refactoring, writing good
tests increases my effectiveness as a programmer. This was a surprise for me and
is counterintuitive for most programmers—so it's worth explaining why.

The Value of Self-Testing Code

If you look at how most programmers spend their time, you'll find that writing
code is actually quite a small fraction. Some time is spent figuring out what ought
to be going on, some time is spent designing, but most time is spent debugging.
I'm sure every reader can remember long hours of debugging—often, well into
the night. Every programmer can tell a story of a bug that took a whole day (or
more) to find. Fixing the bug is usually pretty quick, but finding it is a nightmare.
And then, when you do fix a bug, there’s always a chance that another one will
appear and that you might not even notice it till much later. And you'll spend
ages finding that bug.

The event that started me on the road to self-testing code was a talk at OOPSLA
in 1992. Someone (I think it was “Bedarra” Dave Thomas) said offhandedly,
“Classes should contain their own tests.” So I decided to incorporate tests into
the code base together with the production code. As I was also doing iterative
development, I tried adding tests as I completed each iteration. The project on
which I was working at that time was quite small, so we put out iterations every
week or so. Running the tests became fairly straightforward—but although it was
easy, it was still pretty boring. This was because every test produced output to
the console that I had to check. Now I'm a pretty lazy person and am prepared
to work quite hard in order to avoid work. I realized that, instead of looking at
the screen to see if it printed out some information from the model, I could get the

85

86

\I/
/Q\

CHAPTER 4 m BUILDING TESTS

computer to make that test. All I had to do was put the output I expected in the

test code and do a comparison. Now I could run the tests and they would just

print “OK” to the screen if all was well. The software was now self-testing.
Now it was easy to run tests—as easy

Make sure all tests are fully as compiling. So I started to run tests

. every time I compiled. Soon, I began to
automatic and that they check notice my productivity had shot upward.

their own results. I realized that I wasn't spending so much
time debugging. If I added a bug that
was caught by a previous test, it would show up as soon as I ran that test. The
test had worked before, so I would know that the bug was in the work I had
done since I last tested. And I ran the tests frequently—which means only a few
minutes had elapsed. I thus knew that the source of the bug was the code I had
just written. As it was a small amount of code that was still fresh in my mind,
the bug was easy to find. Bugs that would have otherwise taken an hour or more
to find now took a couple of minutes at most. Not only was my software
self-testing, but by running the tests frequently I had a powerful bug detector.
As I noticed this, I became more aggressive about doing the tests. Instead of
waiting for the end of an increment, I would add the tests immediately after
writing a bit of function. Every day I would add a couple of new features and
the tests to test them. I hardly ever spent more than a few minutes hunting for
a regression bug.
Tools for writing and organizing these

A suite Of tests is a pOZU@TfMl tests have developed a great deal since
my experiments. While flying from

bug detector that d(ZCLZP itates Switzerland to Atlanta for OOPSLA 1997,
the time it takes to ﬁnd bugs, Kent Beck paired with Erich Gamma to

port his unit testing framework from
Smalltalk to Java. The resulting framework, called JUnit, has been enormously
influential for program testing, inspiring a huge variety of similar tools [mf-xunit]
in lots of different languages.

Admittedly, it is not so easy to persuade others to follow this route. Writing
the tests means a lot of extra code to write. Unless you have actually experienced
how it speeds programming, self-testing does not seem to make sense. This is
not helped by the fact that many people have never learned to write tests or even
to think about tests. When tests are manual, they are gut-wrenchingly boring.
But when they are automatic, tests can actually be quite fun to write.

In fact, one of the most useful times to write tests is before I start programming.
When I need to add a feature, I begin by writing the test. This isn't as backward
as it sounds. By writing the test, I'm asking myself what needs to be done to add
the function. Writing the test also concentrates me on the interface rather than the
implementation (always a good thing). It also means I have a clear point at which
I'm done coding—when the test works.

SAMPLE CODE TO TEST

Kent Beck baked this habit of writing the test first into a technique called Test-
Driven Development (TDD) [mf-tdd]. The Test-Driven Development approach
to programming relies on short cycles of writing a (failing) test, writing the code to
make that test work, and refactoring to ensure the result is as clean as possible.
This test-code-refactor cycle should occur many times per hour, and can be a
very productive and calming way to write code. I'm not going to discuss it further
here, but I do use and warmly recommend it.

That's enough of the polemic. Although I believe everyone would benefit by
writing self-testing code, it is not the point of this book. This book is about
refactoring. Refactoring requires tests. If you want to refactor, you have to write
tests. This chapter gives you a start in doing this for JavaScript. This is not
a testing book, so I'm not going to go into much detail. I've found, however, that
with testing a remarkably small amount of work can have surprisingly big benefits.

As with everything else in this book, I describe the testing approach using ex-
amples. When I develop code, I write the tests as I go. But sometimes, I need to
refactor some code without tests—then I have to make the code self-testing before
I begin.

Sample Code to Test
Here’s some code to look at and test. The code supports a simple application

that allows a user to examine and manipulate a production plan. The (crude) UI
looks like this:

Province: Asia

demand: 3o price: zo

3 producers:

Byzantium: cost: 1o production: s full revenue: 90
Attalia: cost: 12 production: 10 full revenue: 120
Sinope: cost: 10 production: s full revenue: 60

shortfall: 5 profit 230

87

88

CHAPTER 4 m BUILDING TESTS

The production plan has a demand and price for each province. Each province
has producers, each of which can produce a certain number of units at a particular
price. The UI also shows how much revenue each producer would earn if they
sell all their production. At the bottom, the screen shows the shortfall in produc-
tion (the demand minus the total production) and the profit for this plan. The
Ul allows the user to manipulate the demand, price, and the individual producer’s
production and costs to see the effect on the production shortfall and profits.
Whenever a user changes any number in the display, all the others update
immediately.

I'm showing a user interface here, so you can sense how the software is used,
but I'm only going to concentrate on the business logic part of the software—that
is, the classes that calculate the profit and the shortfall, not the code that generates
the HTML and hooks up the field changes to the underlying business logic. This
chapter is just an introduction to the world of self-testing code, so it makes sense
for me to start with the easiest case—which is code that doesn’t involve user in-
terface, persistence, or external service interaction. Such separation, however, is
a good idea in any case: Once this kind of business logic gets at all complicated,
I will separate it from the UI mechanics so I can more easily reason about it and
test it.

This business logic code involves two classes: one that represents a single
producer, and the other that represents a whole province. The province’s con-
structor takes a JavaScript object—one we could imagine being supplied by a
JSON document.

Here's the code that loads the province from the JSON data:

class Province...

constructor(doc) {
this. name = doc.name;
this. producers = [1;
this. totalProduction = 0;
this. demand = doc.demand;
this. price = doc.price;
doc.producers.forEach(d => this.addProducer(new Producer(this, d)));
}
addProducer(arg) {
this. producers.push(arg);
this. totalProduction += arg.production;

}

This function creates suitable JSON data. I can create a sample province for
testing by constructing a province object with the result of this function.

SAMPLE CODE TO TEST

top level...

function sampleProvinceData() {
return {
name: "Asia",
producers: [
{name: "Byzantium", cost: 10, production: 9},
{name: "Attalia", cost: 12, production: 10},
{name: "Sinope", cost: 10, production: 6},
]I
demand: 30,
price: 20
b
}

The province class has accessors for the various data values:

class Province...

get name() {return this. name;}

get producers() {return this. producers.slice();}

get totalProduction() {return this. totalProduction;}
set totalProduction(arg) {this. totalProduction = arg;}
get demand() {return this. demand;}

set demand(arg) {this. demand = parseInt(arg);}

get price() {return this. price;}

set price(arg) {this. price = parselnt(arg);}

The setters will be called with strings from the Ul that contain the numbers,
so I need to parse the numbers to use them reliably in calculations.
The producer class is mostly a simple data holder:

class Producer...

constructor(aProvince, data) {
this. province = aProvince;
this. cost = data.cost;
this. name = data.name;
this. production = data.production || 0;
}
get name() {return this. name;}
get cost() {return this. cost;}
set cost(arg) {this. cost = parselnt(arg);}

get production() {return this. production;}
set production(amountStr) {
const amount = parseInt(amountStr);
const newProduction = Number.isNaN(amount) ? @ : amount;
this. province.totalProduction += newProduction - this. production;
this. production = newProduction;

}

89

920 CHAPTER 4 m BUILDING TESTS

The way that set production updates the derived data in the province is ugly, and
whenever [see that I want to refactor to remove it. But I have to write tests before
that I can refactor it.

The calculation for the shortfall is simple.

class Province...

get shortfall() {
return this. demand - this.totalProduction;

}

That for the profit is a bit more involved.

class Province...

get profit() {
return this.demandValue - this.demandCost;

}
get demandCost() {
let remainingDemand = this.demand;
let result = 0;
this.producers
.sort((a,b) => a.cost - b.cost)
.forEach(p => {
const contribution = Math.min(remainingDemand, p.production);
remainingDemand -= contribution;
result += contribution * p.cost;
b

return result;

}
get demandValue() {
return this.satisfiedDemand * this.price;
}
get satisfiedDemand() {
return Math.min(this. demand, this.totalProduction);

}

A First Test

To test this code, I'll need some sort of testing framework. There are many out
there, even just for JavaScript. The one I'll use is Mocha [mocha], which is rea-
sonably common and well-regarded. I won't go into a full explanation of how to
use the framework, just show some example tests with it. You should be able to
adapt, easily enough, a different framework to build similar tests.

A FIRST TEST

Here is a simple test for the shortfall calculation:

describe('province', function() {
it('shortfall', function() {
const asia = new Province(sampleProvinceData());
assert.equal(asia.shortfall, 5);
i
I3

The Mocha framework divides up the test code into blocks, each grouping to-
gether a suite of tests. Each test appears in an it block. For this simple case, the
test has two steps. The first step sets up some fixture—data and objects that are
needed for the test: in this case, a loaded province object. The second line verifies
some characteristic of that fixture—in this case, that the shortfall is the amount
that should be expected given the initial data.

Different developers use the descriptive strings in the describe and it blocks differently.
Some would write a sentence that explains what the test is testing, but others prefer
to leave them empty, arguing that the descriptive sentence is just duplicating the code
in the same way a comment does. I like to put in just enough to identify which test is
which when I get failures.

If I run this test in a NodeJS console, the output looks like this:

rrrrrrrrrrrg

1 passing (61ms)

Note the simplicity of the feedback—just a summary of how many tests are run
and how many have passed.
When I write a test against existing

code like this, it's nice to see that all is Always make sure a test will

well—but I'm naturally skeptical. Particu- . .
larly, once I have a lot of tests running, fall when it should.

I'm always nervous that a test isn't really

exercising the code the way I think it is, and thus won't catch a bug when I need
it to. So I like to see every test fail at least once when I write it. My favorite way
of doing that is to temporarily inject a fault into the code, for example:

class Province...

get shortfall() {
return this. demand - this.totalProduction ;

}

Here’s what the console now looks like:

91

92

CHAPTER 4 m BUILDING TESTS

0 passing (72ms)
1 failing

1) province shortfall:
AssertionError: expected -20 to equal 5

at Context.<anonymous> (src/tester.js:10:12)

The framework indicates which test failed and gives some information about
the nature of the failure—in this case, what value was expected and what value
actually turned up. I therefore notice at once that something failed—and I can
immediately see which tests failed, giving me a clue as to what went wrong (and,
in this case, confirming the failure was where I injected it).

Run tests frequently. Run those
exercising the code you're
working on at least every few
minutes; run all tests at least
daily.

In a real system, I might have thou-
sands of tests. A good test framework
allows me to run them easily and to
quickly see if any have failed. This simple
feedback is essential to self-testing code.
When I work, I'll be running tests very
frequently—checking progress with new
code or checking for mistakes with
refactoring.

The Mocha framework can use different libraries, which it calls assertion li-
braries, to verify the fixture for a test. Being JavaScript, there are a quadzillion
of them out there, some of which may still be current when you're reading this.
The one I'm using at the moment is Chai [chai]. Chai allows me to write my
validations either using an “assert” style:

describe('province', function() {
it('shortfall', function() {

const asia = new Province(sampleProvinceData());

1
};

or an “expect” style:

describe('province', function() {
it('shortfall', function() {

const asia = new Province(sampleProvinceData());

1
1

[usually prefer the assert style, but at the moment I mostly use the expect style

while working in JavaScript.

Different environments provide different ways to run tests. When I'm program-
ming in Java, I use an IDE that gives me a graphical test runner. Its progress bar

ADD ANOTHER TEST

is green as long as all the tests pass, and turns red should any of them fail. My
colleagues often use the phrases “green bar” and “red bar” to describe the state
of tests. I might say, “Never refactor on a red bar,” meaning you shouldn’t be
refactoring if your test suite has a failing test. Or, I might say, “Revert to green”
to say you should undo recent changes and go back to the last state where you
had all-passing test suite (usually by going back to a recent version-control
checkpoint).

Graphical test runners are nice, but not essential. I usually have my tests set
to run from a single key in Emacs, and observe the text feedback in my com-
pilation window. The key point is that I can quickly see if my tests are all OK.

Add Another Test

Now I'll continue adding more tests. The style I follow is to look at all the things
the class should do and test each one of them for any conditions that might
cause the class to fail. This is not the same as testing every public method, which
is what some programmers advocate. Testing should be risk-driven; remember,
I'm trying to find bugs, now or in the future. Therefore I don't test accessors that
just read and write a field: They are so simple that I'm not likely to find a bug
there.

This is important because trying to write too many tests usually leads to not
writing enough. I get many benefits from testing even if I do only a little testing.
My focus is to test the areas that I'm most worried about going wrong. That way
I get the most benefit for my testing effort.

So I'll start by hitting the other main

output for this code—the profit calcula- [t s hetter to write and run
tion. Again, I'll just do a basic test for .
incomplete tests than not to

profit on my initial fixture.
describe('province', function() { run Complete tests.

it('shortfall', function() {

const asia = new Province(sampleProvinceData());
expect(asia.shortfall).equal(5);
B

1

That shows the final result, but the way I got it was by first setting the expected
value to a placeholder, then replacing it with whatever the program produced (230).
I could have calculated it by hand myself, but since the code is supposed to be
working correctly, I'll just trust it for now. Once I have that new test working

93

94

CHAPTER 4 m BUILDING TESTS

correctly, I break it by altering the profit calculation with a spurious * 2. I satisfy
myself that the test fails as it should, then revert my injected fault. This pat-
tern—write with a placeholder for the expected value, replace the placeholder
with the code’s actual value, inject a fault, revert the fault—is a common one I
use when adding tests to existing code.

There is some duplication between these tests—both of them set up the fixture
with the same first line. Just as I'm suspicious of duplicated code in regular code,
I'm suspicious of it in test code, so will look to remove it by factoring to a common
place. One option is to raise the constant to the outer scope.

describe('province', function() {

it('shortfall', function() {
expect(asia.shortfall).equal(5);

Hi

it('profit', function() {

expect(asia.profit).equal(230);

I3

B

But as the comment indicates, I never do this. It will work for the moment,
but it introduces a petri dish that’s primed for one of the nastiest bugs in testing—a
shared fixture which causes tests to interact. The const keyword in JavaScript only
means the reference to asia is constant, not the content of that object. Should a
future test change that common object, I'll end up with intermittent test failures
due to tests interacting through the shared fixture, yielding different results de-
pending on what order the tests are run in. That's a nondeterminism in the tests
that can lead to long and difficult debugging at best, and a collapse of confidence
in the tests at worst. Instead, I prefer to do this:

describe('province', function() {

it('shortfall', function() {
expect(asia.shortfall).equal(5);
B
it('profit', function() {
expect(asia.profit).equal(230);
B
b

The beforeEach clause is run before each test runs, clearing out asia and setting
it to a fresh value each time. This way I build a fresh fixture before each test is
run, which keeps the tests isolated and prevents the nondeterminism that causes
so much trouble.

When I give this advice, some people are concerned that building a fresh fixture
every time will slow down the tests. Most of the time, it won't be noticeable. If

MODIFYING THE FIXTURE

it is a problem, I'd consider a shared fixture, but then I will need to be really
careful that no test ever changes it. I can also use a shared fixture if I'm sure it
is truly immutable. But my reflex is to use a fresh fixture because the debugging
cost of making a mistake with a shared fixture has bit me too often in the past.

Given I run the setup code in beforeEach with every test, why not leave the setup
code inside the individual it blocks? I like my tests to all operate on a common
bit of fixture, so I can become familiar with that standard fixture and see the
various characteristics to test on it. The presence of the beforeEach block signals to
the reader that I'm using a standard fixture. You can then look at all the tests
within the scope of that describe block and know they all take the same base data
as a starting point.

Modifying the Fixture

So far, the tests I've written show how I probe the properties of the fixture once
I've loaded it. But in use, that fixture will be regularly updated by the users as
they change values.

Most of the updates are simple setters, and I don’t usually bother to test those
as there’s little chance they will be the source of a bug. But there is some compli-
cated behavior around Producer’s production setter, so I think that’s worth a test.

describe('province’...
it('change production', function() {
asia.producers[0].production = 20;
expect(asia.shortfall).equal(-6);
expect(asia.profit).equal(292);
b

This is a common pattern. I take the initial standard fixture that’s set up by
the beforeEach block, I exercise that fixture for the test, then I verify the fixture has
done what I think it should have done. If you read much about testing, you'll
hear these phases described variously as setup-exercise-verify, given-when-then,
or arrange-act-assert. Sometimes you'll see all the steps present within the test
itself, in other cases the common early phases can be pushed out into standard
setup routines such as beforeEach.

(There is an implicit fourth phase that's usually not mentioned: teardown. Teardown
removes the fixture between tests so that different tests don't interact with each other.
By doing all my setup in beforefach, I allow the test framework to implicitly tear down
my fixture between tests, so I can take the teardown phase for granted. Most writers
on tests gloss over teardown—reasonably so, since most of the time we ignore it. But
occasionally, it can be important to have an explicit teardown operation, particularly if
we have a fixture that we have to share between tests because it's slow to create.)

95

96

CHAPTER 4 m BUILDING TESTS

In this test, I'm verifying two different characteristics in a single it clause. As
a general rule, it's wise to have only a single verify statement in each it clause.
This is because the test will fail on the first verification failure—which can often
hide useful information when you're figuring out why a test is broken. In this
case, I feel the two are closely enough connected that I'm happy to have them
in the same test. Should I wish to separate them into separate it clauses, I can
do that later.

Probing the Boundaries

So far my tests have focused on regular usage, often referred to as “happy path”
conditions where everything is going OK and things are used as expected. But
it's also good to throw tests at the boundaries of these conditions—to see what
happens when things might go wrong.

Whenever [have a collection of something, such as producers in this example,
I like to see what happens when it's empty.

describe('no producers', function() {
let noProducers;
beforeEach(function() {
const data = {
name: "No proudcers",
producers: [],
demand: 30,
price: 20
b
noProducers = new Province(data);
i
it('shortfall', function() {
expect(noProducers.shortfall).equal(30);
I3
it('profit', function() {
expect (noProducers.profit).equal(0);

3}

With numbers, zeros are good things to probe:

describe('province’...
it('zero demand', function() {
asia.demand = 0;
expect(asia.shortfall).equal(-25);
expect(asia.profit).equal(0);
I3

as are negatives:

PROBING THE BOUNDARIES 97

describe('province’...
it('negative demand', function() {
asia.demand = -1;
expect(asia.shortfall).equal(-26);
expect(asia.profit).equal(-10);
B

At this point, I may start to wonder if a negative demand resulting in a negative
profit really makes any sense for the domain. Shouldn't the minimum demand
be zero? In which case, perhaps, the setter should react differently to a negative
argument—raising an error or setting the value to zero anyway. These are good
questions to ask, and writing tests like this helps me think about how the code
ought to react to boundary cases.

The setters take a string from the fields

in the Ul, which are constrained to only Tk Of the boundary condi- 1,
accept numbers—but they can still be -C)-

blank, so I should have tests that ensure tions under which thlngs mlght =k
the code responds to the blanks the way 90 wrong and concentrate your

[want it to. tests there.

describe('province’...
it('empty string demand', function() {

asia.demand = "";
expect(asia.shortfall).NaN;
expect(asia.profit).NaN;

b

Notice how I'm playing the part of an enemy to my code. I'm actively thinking
about how I can break it. I find that state of mind to be both productive and fun.
It indulges the mean-spirited part of my psyche.

This one is interesting:

describe('string for producers', function() {

it('", function() {

const data = {

name: "String producers",
producers: "",
demand: 30,
price: 20
b
const prov = new Province(data);
expect(prov.shortfall).equal(0);
B

This doesn’t produce a simple failure reporting that the shortfall isn't 0. Here’s
the console output:

98

CHAPTER 4 m BUILDING TESTS

rrrrrrrang

9 passing (74ms)
1 failing

1) string for producers :
TypeError: doc.producers.forEach is not a function
at new Province (src/main.js:22:19)
at Context.<anonymous> (src/tester.js:86:18)

Mocha treats this as a failure—but many testing frameworks distinguish between
this situation, which they call an error, and a regular failure. A failure indicates
a verify step where the actual value is outside the bounds expected by the verify
statement. But this error is a different animal—it’s an exception raised during an
earlier phase (in this case, the setup). This looks like an exception that the authors
of the code hadn’t anticipated, so we get an error sadly familiar to JavaScript
programmers (“... is not a function”).

How should the code respond to such a case? One approach is to add some
handling that would give a better error response—either raising a more meaningful
error message, or just setting producers to an empty array (with perhaps a log
message). But there may also be valid reasons to leave it as it is. Perhaps the
input object is produced by a trusted source—such as another part of the same
code base. Putting in lots of validation checks between modules in the same code
base can result in duplicate checks that cause more trouble than they are worth,
especially if they duplicate validation done elsewhere. But if that input object is
coming in from an external source, such as a JSON-encoded request, then valida-
tion checks are needed, and should be tested. In either case, writing tests like
this raises these kinds of questions.

If I'm writing tests like this before refactoring, I would probably discard this
test. Refactoring should preserve observable behavior; an error like this is outside
the bounds of observable, so I need not be concerned if my refactoring
changes the code’s response to this condition.

If this error could lead to bad data running around the program, causing a failure that
will be hard to debug, I might use Introduce Assertion (302) to fail fast. I don’t add tests
to catch such assertion failures, as they are themselves a form of test.

When do you stop? I'm sure you have

Don't let the fear that testing heard many times that you cannot prove
that a program has no bugs by testing.

can’t catch all ngS StOp you That's true, but it does not affect the
from ZUViting tests that catch ability of testing to speed up program-
most bblgS. ming. I've seen various proposed rule.s

to ensure you have tested every combi-
nation of everything. It's worth taking a
look at these—but don't let them get to you. There is a law of diminishing returns
in testing, and there is the danger that by trying to write too many tests you

MUCH MORE THAN THIS

become discouraged and end up not writing any. You should concentrate on
where the risk is. Look at the code and see where it becomes complex. Look at
a function and consider the likely areas of error. Your tests will not find every
bug, but as you refactor, you will understand the program better and thus find
more bugs. Although I always start refactoring with a test suite, I invariably add
to it as I go along.

Much More Than This

That's as far as I'm going to go with this chapter—after all, this is a book on
refactoring, not on testing. But testing is an important topic, both because it’s a
necessary foundation for refactoring and because it’s a valuable tool in its own
right. While I've been happy to see the growth of refactoring as a programming
practice since I wrote this book, I've been even happier to see the change in atti-
tudes to testing. Previously seen as the responsibility of a separate (and inferior)
group, testing is now increasingly a first-class concern of any decent software
developer. Architectures often are, rightly, judged on their testability.

The kinds of tests I've shown here are unit tests, designed to operate on a
small area of the code and run fast. They are the backbone of self-testing code;
most tests in such a system are unit tests. There are other kinds of tests too, fo-
cusing on integration between components, exercising multiple levels of the
software together, looking for performance issues, etc. (And even more varied
than the types of tests are the arguments people get into about how to classify
tests.)

Like most aspects of programming, testing is an iterative activity. Unless you
are either very skilled or very lucky, you won't get your tests right the first time.
I find I'm constantly working on the test suite—just as much as I work on the
main code. Naturally, this means adding new tests as I add new features, but it
also involves looking at the existing tests. Are they clear enough? Do I need to
refactor them so I can more easily understand what they are doing? Have I got
the right tests? An important habit to get into is to respond to a bug by first
writing a test that clearly reveals the bug. Only after I have the test do I fix the
bug. By having the test, I know the bug will stay dead. I also think about that
bug and its test: Does it give me clues to other gaps in the test suite?

A common question is, “How much

testing is enough?” There’s no good A/}1e11 you g@t a bug report,

measurement for this. Some people advo- Y .
cate using test coverage [mf-tc] as a start by wniting a unit test that

measure, but test coverage analysis is exXposes the bug
only good for identifying untested areas
of the code, not for assessing the quality of a test suite.

99

100

CHAPTER 4 m BUILDING TESTS

The best measure for a good enough test suite is subjective: How confident
are you that if someone introduces a defect into the code, some test will fail?
This isn't something that can be objectively analyzed, and it doesn’t account for
false confidence, but the aim of self-testing code is to get that confidence. If I
can refactor my code and be pretty sure that I've not introduced a bug because
my tests come back green—then I can be happy that I have good enough tests.

It is possible to write too many tests. One sign of that is when I spend more
time changing the tests than the code under test—and I feel the tests are slowing
me down. But while over-testing does happen, it's vanishingly rare compared to
under-testing.

Chapter 5

Introducing the Catalog

The rest of this book is a catalog of refactorings. This catalog started from my
personal notes that I made to remind myself how to do refactorings in a safe and
efficient way. Since then, I've refined the catalog, and there’s more of it that
comes from deliberate exploration of some refactoring moves. Its still something
I use when I do a refactoring I haven’t done in a while.

Format of the Refactorings

As I describe the refactorings in the catalog, I use a standard format. Each refac-
toring has five parts, as follows:

m [begin with a name. The name is important to building a vocabulary of
refactorings. This is the name I use elsewhere in the book. Refactorings often
go by different names now, so I also list any aliases that seem to be common.

m [follow the name with a short sketch of the refactoring. This helps you find
a refactoring more quickly.

m The motivation describes why the refactoring should be done and describes
circumstances in which it shouldn’t be done.

m The mechanics are a concise, step-by-step description of how to carry out
the refactoring.

s The examples show a very simple use of the refactoring to illustrate how it
works.

The sketch shows a code example of the transformation of the refactoring. It's
not meant to explain what the refactoring is, let alone how to do it, but it should
remind you what the refactoring is if you've come across it before. If not, you'll
probably need to work through the example to get a better idea. I also include

101

102

CHAPTER 5 m INTRODUCING THE CATALOG

a small graphic; again, I don't intend it to be explanatory—it's more of a graphic
memory-jogger.

The mechanics come from my own notes to remember how to do the refactoring
when I haven't done it for a while. As such, they are somewhat terse, usually
without explanations of why the steps are done that way. I give a more expansive
explanation in the example. This way, the mechanics are short notes you can
refer to easily when you know the refactoring but need to look up the steps (at
least this is how I use them). You'll probably need to read the examples when
you first do the refactoring.

I've written the mechanics in such a way that each step of each refactoring is
as small as possible. I emphasize the safe way of doing the refactoring—which
is to take very small steps and test after every one. At work, I usually take larger
steps than some of the baby steps described, but if I run into a bug, I back out
the last step and take the smaller steps. The steps include a number of references
to special cases. The steps thus also function as a checklist; I often forget these
things myself.

Although I (with few exceptions) only list one set of mechanics, they aren’t
the only way to carry out the refactoring. I selected the mechanics in the book
because they work pretty well most of the time. It's likely you'll vary them as
you get more practice in refactoring, and that’s fine. Just remember that the key
is to take small steps—and the trickier the situation, the smaller the steps.

The examples are of the laughably simple textbook kind. My aim with the ex-
amples is to help explain the basic refactoring with minimal distractions, so I
hope you'll forgive the simplicity. (They are certainly not examples of good
business modeling.) I'm sure you'll be able to apply them to your rather more
complex situations. Some very simple refactorings don’t have examples because
I didn’t think an example would add much.

In particular, remember that the examples are included only to illustrate the
one refactoring under discussion. In most cases, there are still problems with
the code at the end—but fixing these problems requires other refactorings. In a
few cases in which refactorings often go together, I carry examples from one re-
factoring to another. In most cases, I leave the code as it is after the single
refactoring. I do this to make each refactoring self-contained, because the primary
role of the catalog is to be a reference.

I use color to highlight changed code where it may be difficult to spot among
code that has not been changed. I do not use highlighting for all changed code,
because too much defeats the purpose.

The Choice of Refactorings

This is by no means a complete catalog of refactorings. It is, I hope, a collection
of those most useful to have them written down. By “most useful” I mean those

THE CHOICE OF REFACTORINGS

that are both commonly used and worthwhile to name and describe. I find
something worthwhile to describe for a combination of reasons: Some have in-
teresting mechanics which help general refactoring skills, some have a strong
effect on improving the design of code.

Some refactorings are missing because they are so small and straightforward
that I don't feel they are worth writing up. An example in the first edition was
Slide Statements (223)—which I use frequently but didn’t recognize as something
I should include in the catalog (obviously, I changed my mind for this edition).
These may well get added to the book over time, depending on how much energy
I devote to new refactorings in the future.

Another category is refactorings that logically exist, but either aren’t used much
by me or show a simple similarity to other refactorings. Every refactoring in this
book has a logical inverse refactoring, but I didn't write all of them up because
I don't find many inverses interesting. Encapsulate Variable (132) is a common and
powerful refactoring but its inverse is something I hardly ever do (and it is easy
to perform anyway) so I didn't think we need a catalog entry for it.

103

This page intentionally left blank

Chapter 6

A First Set of Refactorings

I'm starting the catalog with a set of refactorings that I consider the most useful
to learn first.

Probably the most common refactoring I do is extracting code into a function
(Extract Function (106)) or a variable (Extract Variable (119)). Since refactoring is
all about change, it's no surprise that I also frequently use the inverses of those
two (Inline Function (115) and Inline Variable (123)).

Extraction is all about giving names, and I often need to change the names as
I learn. Change Function Declaration (124) changes names of functions; I also
use that refactoring to add or remove a function’s arguments. For variables, I use
Rename Variable (137), which relies on Encapsulate Variable (132). When changing
function arguments, I often find it useful to combine a common clump of
arguments into a single object with Introduce Parameter Object (140).

Forming and naming functions are essential low-level refactorings—but, once
created, it's necessary to group functions into higher-level modules. I use Combine
Functions into Class (144) to group functions, together with the data they operate
on, into a class. Another path I take is to combine them into a transform (Combine
Functions into Transform (149)), which is particularly handy with read-only data.
At a step further in scale, I can often form these modules into distinct processing
phases using Split Phase (154).

105

106

CHAPTER 6 m A FIRST SET OF REFACTORINGS

Extract Function

formerly: Extract Method
inverse of: Inline Function (115)

function printOwing(invoice) {
printBanner();
let outstanding = calculateOutstanding();

//print details
console.log(name: ${invoice.customer}");
console.log(amount: ${outstanding}");

}

function printOwing(invoice) {
printBanner();
let outstanding = calculateOutstanding();
printDetails(outstanding);

function printDetails(outstanding) {
console.log(name: ${invoice.customer}");
console.log(amount: ${outstanding});
}
}

Motivation

Extract Function is one of the most common refactorings I do. (Here, I use the
term “function” but the same is true for a method in an object-oriented language,
or any kind of procedure or subroutine.) [look at a fragment of code, understand
what it is doing, then extract it into its own function named after its purpose.
During my career, I've heard many arguments about when to enclose code in
its own function. Some of these guidelines were based on length: Functions
should be no larger than fit on a screen. Some were based on reuse: Any code

EXTRACT FUNCTION

used more than once should be put in its own function, but code only used once
should be left inline. The argument that makes most sense to me, however, is
the separation between intention and implementation. If you have to spend effort
looking at a fragment of code and figuring out what it's doing, then you should
extract it into a function and name the function after the “what.” Then, when you
read it again, the purpose of the function leaps right out at you, and most of the
time you won't need to care about how the function fulfills its purpose (which
is the body of the function).

Once I accepted this principle, I developed a habit of writing very small
functions—typically, only a few lines long. To me, any function with more than
half-a-dozen lines of code starts to smell, and it's not unusual for me to have
functions that are a single line of code. The fact that size isn't important was
brought home to me by an example that Kent Beck showed me from the original
Smalltalk system. Smalltalk in those days ran on black-and-white systems. If you
wanted to highlight some text or graphics, you would reverse the video. Smalltalk’s
graphics class had a method for this called highlight, whose implementation was
just a call to the method reverse. The name of the method was longer than its
implementation—but that didn’t matter because there was a big distance between
the intention of the code and its implementation.

Some people are concerned about short functions because they worry about
the performance cost of a function call. When I was young, that was occasionally
a factor, but that's very rare now. Optimizing compilers often work better with
shorter functions which can be cached more easily. As always, follow the general
guidelines on performance optimization.

Small functions like this only work if the names are good, so you need to pay
good attention to naming. This takes practice—but once you get good at it, this
approach can make code remarkably self-documenting.

Often, I see fragments of code in a larger function that start with a comment
to say what they do. The comment is often a good hint for the name of the
function when I extract that fragment.

Mechanics

m Create a new function, and name it after the intent of the function (name
it by what it does, not by how it does it).

If the code I want to extract is very simple, such as a single function call, I still
extract it if the name of the new function will reveal the intent of the code in a
better way. If I can’t come up with a more meaningful name, that’s a sign that I
shouldn't extract the code. However, I don't have to come up with the best name
right away; sometimes a good name only appears as I work with the extraction.
It's OK to extract a function, try to work with it, realize it isn't helping, and then
inline it back again. As long as I've learned something, my time wasn't wasted.

107

108 CHAPTER 6 m A FIRST SET OF REFACTORINGS

If the language supports nested functions, nest the extracted function inside the
source function. That will reduce the amount of out-of-scope variables to deal
with after the next couple of steps. I can always use Move Function (198) later.

m Copy the extracted code from the source function into the new target
function.

m Scan the extracted code for references to any variables that are local in scope
to the source function and will not be in scope for the extracted function.
Pass them as parameters.

If I extract into a nested function of the source function, I don’t run into these
problems.

Usually, these are local variables and parameters to the function. The most general
approach is to pass all such parameters in as arguments. There are usually no
difficulties for variables that are used but not assigned to.

If a variable is only used inside the extracted code but